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Introduction

Welcome to the first edition of my guide on multivariable calculus, also known as Calculus III in the
United States. We will cover vectors, multivariable differentiation, multiple integrals, vector fields,
and the fundamental theorems of vector calculus. I don’t intend for this to be as comprehensive
as an entire semester or rigorous enough for a math major, but rather the most condensed version
possible. Thus, I focus on clear concepts and getting you what you need to know for future learning.
Material is divided up into three clear parts. You should work through every EXAMPLE on
your own to test your knowledge.

There is indeed a lot of content, potentially quadruple what you learned in single-variable calculus
(AP Calculus BC or Calculus I and Calculus II). That being said, you can do this. The material
here is the backbone of your future math and science courses. Make sure to develop a foundation
here so you can move on to more interesting things!

Recall that learning is a process, not a destination. It truly takes thousands of hours to fully learn
many areas of mathematics. The best way to use this series is to combine it with other resources
like textbooks and lectures. Read through a variety of explanations and keep revisiting problems.
Remember to practice metacognition and create a routine that is conducive to metalearning. I
highly recommend turning your work into a “guide” that you can look back on in the future.

All sources used to create this guide are listed in Bibliography. I highly recommend checking out
all of the resources there for more practice problems. Any images not attributed to someone else
were created by and belong to me.

https://rhoclouds.github.io


https://rhoclouds.github.io 5

Part I

Vectors and Derivatives in R3 Space

In Part I, we will explore the concepts and tools that let us extend single-variable calculus into
higher dimensions. We will cover vectors and how to operate on them, three-dimensional analytic
geometry, calculus with vector-valued functions, multivariable limits, partial derivatives, and the
classic applications of multivariable differentiation. By the end of this, you will have learned about

• Visualizing and computing vectors (i.e. dot products, cross products)

• Using vector-valued functions to describe curves and functions in space

• Geometry of lines, planes, and surfaces

• How concepts in single-variable calculus work with multiple variables

• Using partial and directional derivatives to analyze functions

Geometric interpretation of the partial derivative
∂f/∂x for the surface f(x, y) = sin(x) cos(y) at the point (1, 1)

https://rhoclouds.github.io
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1 Review

1.1 Single-Variable Calculus

In single-variable calculus, you studied three main concepts: the limit, the derivative, and the
integral.

The limit is perhaps the single most important definition in all of calculus, but it is also one of the
most difficult to grasp. It describes how a function behaves as it gets infinitely close to a certain
point.

Definition: A function f approaches the limit L near a. If for every ε > 0 there exists a
δ > 0 where the following is true for all x

0 < |x− a| < δ,

Then
|f(x)− L| < ε.

where x is the input variable, a is the point x approaches, ε represents how close we want f(x)
to be to L, and δ represents how close x must be to a to achieve that closeness.

In simpler terms, this means that no matter how close you want f(x) to be to L, you can always
find a range around a where this happens.

The general notation for a limit is

lim
x→a

f(x) = L.

Recall that a function cannot approach two different limits near a. Near a, if f approaches L and f
approaches another limit value m in the other direction, then L = m. That is, the right-hand and
left-hand limits must agree:

lim
x→a−

f(x) = m = lim
x→a+

f(x) = L

https://rhoclouds.github.io
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Here are the most important properties of limits. These properties allow you to simplify expressions
and compute limits quickly. In each case, we assume limx→a f(x) and limx→a g(x) exist. Let c be
any constant.

Sum Rule:

lim
x→a

[f(x) + g(x)] = lim
x→a

f(x) + lim
x→a

g(x)

Difference Rule:

lim
x→a

[f(x)− g(x)] = lim
x→a

f(x)− lim
x→a

g(x)

Constant Multiple Rule:

lim
x→a

[c · f(x)] = c · lim
x→a

f(x)

Product Rule:

lim
x→a

[f(x) · g(x)] = lim
x→a

f(x) · lim
x→a

g(x)

Quotient Rule:

lim
x→a

f(x)

g(x)
=

limx→a f(x)

limx→a g(x)
if lim

x→a
g(x) ̸= 0

Power Rule:

lim
x→a

[f(x)]n =
[
lim
x→a

f(x)
]n

for integer n

Root Rule:

lim
x→a

n
√
f(x) = n

√
lim
x→a

f(x) if the limit exists and the root is defined.
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The derivative is likely the first idea you came across in calculus that you found truly powerful.

For the points (a, f(a)) and (a+ h, f(a+ h)), the slope of the secant line between them is given by
f(a+h)−f(a)

h where h ̸= 0. If you then think about the limit of the slope of a tangent line through
(a, f(a)), you would have the expression

lim
h→0

f(a+ h)− f(a)

h
.

From this, we can then acquire the definition of the derivative:

Definition: A function f is differentiable at a if

lim
h→0

f(a+ h)− f(a)

h
∈ R.

This is of course known as the derivative of f at a and written as f ′(a).

The derivative measures the instantaneous rate of change of a function at a point. Geometrically,
that would be the slope of the tangent line to the graph of f at that point. This makes derivatives
an essential tool for analyzing functions.

• If f ′(a) > 0, the tangent line has a positive slope, thus the function is increasing near a.

• If f ′(a) < 0, the tangent line has a negative slope, thus the function is decreasing near a.

• If f ′(a) = 0, the tangent line is flat, thus the function may have a local maximum, minimum,
or a point of inflection at a.

The derivative also determines concavity through the second derivative. f ′′(x) > 0 means the graph
is concave up and f ′′(x) < 0 means the graph is concave down.
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In practice, there are rules we have for computing derivatives quickly:

• Power rule: d
dx [x

n] = nxn−1

• Sum rule: d
dx [f(x) + g(x)] = f ′(x) + g′(x)

• Product rule: d
dx [f(x)g(x)] = f ′(x)g(x) + f(x)g′(x)

• Quotient rule: d
dx

[
f(x)
g(x)

]
= f ′(x)g(x)−f(x)g′(x)

[g(x)]2

The chain rule is one of the most important.

We start with two functions. The function g(x) takes an input x and produces an output g(x). The
function f(x) takes an input and produces an output f(x). Suppose its input will be the result of
g(x).

When we form the corresponding composite function f(g(x)), we are first applying g to x, then
applying f to the result. The behavior of f(g(x)) near x = a depends on two things:

• How g behaves near a, since g(x) determines the input to f .

• How f behaves near g(a), since f takes g(x) as its input.

It is therefore reasonable to require that f be differentiable at g(a) in order for the derivative of
f(g(x)) to exist at x = a. In other words, we need both functions to behave nicely at the right
points: g must be differentiable at a to control how the input changes, and f must be differentiable
at g(a) to control how the output responds to those changes.

The derivative of f(g(x)) with respect to x is:

d

dx
f(g(x)) = f ′(g(x)) · g′(x)

L’Hôpital’s Rule is used to evaluate limits that result in indeterminate forms such as 0
0 or ∞

∞ . Sup-
pose limx→a f(x) = 0 and limx→a g(x) = 0, or both limits are infinite. If f and g are differentiable

near a (with g′(x) ̸= 0 near a) and the limit limx→a
f ′(x)
g′(x) exists (or is ∞ or −∞). Then,

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)
.
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Derivatives tell us how functions change, whereas integrals tell us how much functions accumulate.

Suppose you divide the interval [a, b] into four subintervals [t0, t1], [t1, t2], [t2, t3], [t3, t4]. where
a = t0 < t1 < t2 < t3 < t4 = b. On the ith interval [ti−1, ti], the minimum value of f is mi and the
maximum value is Mi. Thus, the sum

s = m1(t1 − t0) +m2(t2 − t1) +m3(t3 − t2) +m4(t4 − t3)

represents the total area of rectangles inside the region R(f, a, b). On the other hand, the sum

S = M1(t1 − t0) +M2(t2 − t1) +M3(t3 − t2) +M4(t4 − t3)

represents the total area of rectangles that make up the region R(f, a, b). Based on this, it must be
true for any division of subintervals that s ≤ A ≤ S.

A partition of the interval [a, b] is a finite collection of points

P = {t0, t1, . . . , tn} ∈ [a, b]

where a = t0 < t1 < . . . < tn−1 < tn = b. For f bounded on [a, b] with partition P ,

The lower sum is defined as

L(f, P ) =

n∑
i=1

mi(ti − ti−1),

and the upper sum is defined as

U(f, P ) =

n∑
i=1

Mi(ti − ti−1),

where mi and Mi are the minimum and maximum values of f on the subinterval [ti−1, ti], respec-
tively.

These sums represent the total area of rectangles approximating the region under the curve. The
lower sum uses the smallest value of the function on each subinterval, while the upper sum uses the
largest value. As the partition becomes smaller, these sums get closer together, eventually leading
to the exact integral.
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Definition: If f is continuous on [a, b], then f is integrable on [a, b]. In this case, the integral
of f over [a, b] is defined as:

∫ b

a

f(x) dx

which represents the total area under the curve of f from a to b.

For any partition P , we always have:

L(f, P ) ≤
∫ b

a

f(x) dx ≤ U(f, P ).

The fundamental theorem of calculus connects derivatives and integrals, showing that they are
essentially inverse operations. It has two parts. Here is the first:

If f is continuous on [a, b] and F is any antiderivative of f , meaning F ′(x) = f(x), then

∫ b

a

f(x) dx = F (b)− F (a).

This tells us that we can evaluate a definite integral by finding an antiderivative. In other words,
you can add up all of the tiny changes of a quantity to get its total change. The definite integral
represents the net change of the antiderivative.

Here is the second:

If f is continuous on [a, b], then the function

F (x) =

∫ x

a

f(t) dt

is differentiable on [a, b], and

F ′(x) = f(x).

In other words, taking the derivative of an integral simply returns the original function.
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To evaluate integrals, you used the following techniques:

Common Antiderivatives:

These are the most frequently used integrals:

∫
xn dx =

xn+1

n+ 1
+ C (for n ̸= −1)∫

ex dx = ex + C

1

x
dx = ln |x|+ C

u-Substitution:

This is used to simplify integrals by changing variables. It is the reverse of the chain rule:

∫
f(g(x)) g′(x) dx =

∫
f(u) du

Integration by Parts:

This technique is based on the product rule for derivatives:

∫
u dv = uv −

∫
v du
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1.2 Parametric Equations and Polar Coordinates

Instead of describing curves with a single equation like y = f(x), we can represent them using a
parameter t:

x = f(t), y = g(t)

These are called parametric equations. The parameter t often represents time or another quantity
that controls the motion along the curve, which we call a parametric curve.

To find the slope of the curve at a point, we use:

dy

dx
=

dy
dt
dx
dt

This formula gives the rate of change of y with respect to x in terms of derivatives with respect to
the parameter t.

If a curve C is described by the parametric equations

x = f(t), y = g(t)

for α ≤ t ≤ β, and if f ′(t) and g′(t) are continuous on [α, β], then the length of the curve is given
by:

L =

∫ β

α

√(
dx

dt

)2

+

(
dy

dt

)2

dt

or equivalently,

L =

∫ β

α

√
[f ′(t)]2 + [g′(t)]2 dt.
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For the parametric curve where

x = f(t), y = g(t), α ≤ t ≤ β,

and f ′(t) and g′(t) are continuous, the differential arc length element is

ds =

√(
dx

dt

)2

+

(
dy

dt

)2

dt.

Surface area is given by

Sy =

∫ β

α

2πy

√(
dx

dt

)2

+

(
dy

dt

)2

dt

for revolving around the x-axis or

Sx =

∫ β

α

2πx

√(
dx

dt

)2

+

(
dy

dt

)2

dt

for revolving around the y-axis.
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With this, we can show that the surface area of a sphere of radius r is 4πr2.

The sphere is obtained by rotating the semicircle

x = r cos t, y = r sin t, 0 ≤ t ≤ π

about the x-axis.

First, we compute the derivatives:

dx

dt
= −r sin t,

dy

dt
= r cos t

Using the formula for surface area,

S =

∫ π

0

2πr sin t
√
(−r sin t)2 + (r cos t)2 dt = 2π

∫ π

0

r sin t

√
r2(sin2 t+ cos2 t) dt

Simplifying yields

∫ π

0

2πr sin t · r dt.

Now we can evaluate:

2πr2
∫ π

0

sin t dt = 2πr2 [− cos t]
π
0 = 2πr2(− cosπ + cos 0) = 2πr2(1 + 1) = 4πr2

This confirms that the surface area of a sphere of radius r is 4πr2.

In addition to describing curves with Cartesian coordinates (x, y), we can also use polar coordi-
nates, which are based on the distance from the origin and the angle from the positive x-axis.

In polar coordinates, each point is described by:

x = r cos θ, y = r sin θ

where r is the distance from the origin and θ is the angle measured from the positive x-axis.

Polar coordinates are especially useful for describing curves with circular symmetry such as circles,
spirals, and rose curves. To find a tangent line to a polar curve r = f(θ), θ is really a parameter
with parametric equations
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x = r cos θ = f(θ) cos θ, y = r sin θ = f(θ) sin θ.

Then, the slope of the tangent line) is given by:

dy

dx
=

dy
dθ
dx
dθ

=
dr
dθ sin θ + r cos θ
dr
dθ cos θ − r sin θ

.

Here is a gallery of some common polar curves:
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In addition to graphing curves in polar coordinates, you can also compute areas and arc lengths.

Area Enclosed by a Polar Curve:

The area enclosed by the polar curve r = r(θ) from θ = α to θ = β is given by

A =
1

2

∫ β

α

[r(θ)]2 dθ.

Arc Length of a Polar Curve:

The length of a polar curve r = r(θ) from θ = α to θ = β is

L =

∫ β

α

√
[r(θ)]2 +

[
dr

dθ

]2
dθ.

1.3 Infinite Sequences and Series

A sequence is an ordered list of numbers:

a1, a2, a3, a4, ..., an...

Alternatively,

{an}∞n=1

A sequence can also be expressed as a recurrence relation of the form an+1 = f(an) for n ∈ N,
where a1 must be given or as an explicit formula of the form an = f(n) for n ∈ N.
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Sequences are often analyzed by studying their limits.

Limit of a Sequence:

If f(x) is a function such that f(n) = an for all n ∈ N, then the limit of the sequence {an}∞n=1

is given by:

lim
n→∞

an = lim
x→∞

f(x).

That is, if an can be made arbitrarily close to L by taking n sufficiently large, then we say the
limit of the sequence {an}∞n=1 is L.

If limn→∞ an exists, then we say that {an}∞n=1 converges to L. Otherwise, we say the
sequences diverges.

These are the terms used to describe the long-term behavior of a sequence. Let n ∈ N. A sequence
{an}∞n=1 is:

• Increasing if an+1 > an for all n.

• Nondecreasing if an+1 ≥ an for all n.

• Decreasing if an+1 < an for all n.

• Nonincreasing if an+1 ≤ an for all n.

• Monotonic if it is either nondecreasing or nonincreasing.

• Bounded if there exists M ∈ R such that |an| ≤ M for all n.

A sequence {an}∞n=1 is called a geometric sequence if each term is obtained by multiplying the
previous term by a fixed constant r. That is,

an+1 = ran.

All geometric sequences can be written as:

an = a · rn−1

for some constant a ∈ R.
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Limit of a Geometric Sequence:

For r ∈ R, we have:

lim
n→∞

rn =


0, if |r| < 1,

1, if r = 1,

does not exist, if |r| ≥ 1.

This is of course used to determine whether the associated geometric series converges or diverges.
When |r| < 1, the terms will shrink rapidly and thus converge to a finite value. When r = 1, the
terms are constant and grow without bounds, so the series diverges.

Infinite Series:

Given a sequence {an}∞n=1, we define the sequence of partial sums {Sn}∞n=1 by:

Sn = a1 + a2 + · · ·+ an =

n∑
k=1

ak.

The infinite series
∑∞

k=1 ak is defined as

∞∑
k=1

ak = lim
n→∞

Sn.

If this limit exists, we say the series converges. If the limit does not exist, we say the series
diverges.

A geometric series has the general form

a+ ar + ar2 + ar3 + · · · =
∞∑

n=1

arn−1.

The partial sum of the first n terms is denoted Sn:

Sn = a+ ar + ar2 + · · ·+ arn−1 =

n∑
k=1

ark−1.

By factoring and solving, we get the formula for the partial sum:
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Sn = a · 1− rn

1− r
, where r ̸= 1

Geometric Series Test: The infinite geometric series
∑n

k=1 ar
k−1 converges if |r| < 1, in

which case the sum is:

lim
n→∞

Sn =
a

1− r
.

If |r| ≥ 1, the series diverges.

If the infinite series
∑

an converges, then it must satisfy:

lim
n→∞

an = 0.

You can sometimes save yourself time by proving divergence:

Divergence Test: If limn→∞ an ̸= 0, then the series
∑

an diverges. This test only checks
for divergence and says nothing about convergence.

The famous harmonic series is given by:

∞∑
n=1

1

n
= 1 +

1

2
+

1

3
+

1

4
+ · · ·

Despite the fact that terms of the series approach zero, the harmonic series diverges.

A telescoping series is an infinite series where consecutive terms partially cancel when computing
partial sums, leaving only some of the initial and final terms. To apply this technique, we express
each term as a difference:

bn = an − an+1
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Then,

∞∑
n=1

bn = lim
N→∞

N∑
n=1

(an − an+1) = lim
N→∞

(a1 − aN ) = a1 − lim
N→∞

aN .

The series converges if limN→∞ aN exists.

A general tool for testing series is the integral test:

Integral Test: If a function f(x) is continuous, positive, and decreasing on [1,∞) and if
an = f(n), the series

∑∞
n=1 an is convergent if and only if the improper integral

∫∞
1

f(x) dx
is convergent. Otherwise, it is divergent.

One of the most widely used convergence tests for series in a certain form is as follows.

p-Series Test: A series in the form

∞∑
n=1

1

np

converges if p > 1 and diverges if p ≤ 1.

Many series, such as the harmonic series (p = 1), can be tested using this. If you cannot get a series
written in this specific form, you will have to use another test.
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Ratio Test:

Let
∑∞

n=1 an be an infinite series with positive terms an > 0 for all n ∈ N.

This limit compares the size of successive terms in the series:

r = lim
k→∞

ak+1

ak

1. If 0 ≤ r < 1, the series converges.

2. If r > 1 (including r = ∞), the series diverges.

3. If r = 1, the ratio test is inconclusive.

The ratio test is especially useful for series involving factorials or exponentials.

Root Test: For a series
∑∞

n=1 an with nonnegative terms, compute the limit

L = lim
n→∞

n
√
an.

• If 0 ≤ L < 1, the series converges absolutely.

• If L > 1 or L = ∞, the series diverges.

• If L = 1, the test is inconclusive.

The root test is especially useful for series with terms raised to powers or involving exponentials.
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Some series are difficult to compare directly. When this happens, we can compare them to simpler
series.

Direct Comparison Test: Let
∑∞

n=1 an and
∑∞

n=1 bn be infinite series with positive terms.
If the terms satisfy

0 < ak ≤ bk and 0 < bk ≤ ak for all large enough k ∈ N,

then

• If
∑∞

n=1 bn converges, the series also converges.

• If
∑∞

n=1 bn diverges, the series also diverges.

There is no clear set of guidelines for when to use the direct comparison test. If you can satisfy the
inequalities quickly and get a fast answer, then this test is a solid choice. If you cannot, you should
use the following test:

Limit Comparison Test: Let
∑∞

n=1 an and
∑∞

n=1 bn be infinite series with positive terms.
Compute

lim
n→∞

an
bn

= L.

Then

• If 0 < L < ∞, then either both series either converge or diverge.

• If L = 0 and
∑∞

n=1 bn converges, then
∑∞

n=1 an also converges.

• If L = ∞ and
∑∞

n=1 bn diverges, then
∑∞

n=1 an also diverges.
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Before we move on, let’s summarize all the tests we’ve covered:

When testing whether a series with positive terms converges, here is a reasonable strategy to follow:

1. Start with the Divergence Test: If limn→∞ an ̸= 0, the series diverges immediately.

2. Check for Special Series: Determine if your series matches or can be rewritten as one of
these cases:

• Geometric series

• p-series

• Telescoping series

• Harmonic series

3. Consider the Integral Test: If the series terms look like an integrable function, the integral
test might apply.

4. Use the Ratio or Root Test for Factorials and Exponentials: If the terms involve n!,
nn, or an, try the ratio test or possibly the root test.

5. Use Comparison Tests for Rational Terms: If the terms are rational functions of k or
involve roots of rational functions, try the direct comparison test or the limit comparison test
using known classic series from Step 2.
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Until now, we’ve focused on series with positive terms. However, many important series have terms
that aren’t positive. These require different tools to analyze.

An alternating series has terms that switch signs, typically written as

an =

∞∑
n=1

(−1)n−1bn or an =

∞∑
n=1

(−1)nbn,

where an > 0. The factor (−1)n or (−1)n−1 causes the terms to alternate between positive and
negative.

Here is an example:

∞∑
n=1

(−1)n+1 1

n
= 1− 1

2
+

1

3
− 1

4
+

1

5
− · · ·

Here is another example:

∞∑
n=1

(−1)n
n

n+ 1
= −1

2
+

2

3
− 3

4
+

4

5
− 5

6
+ · · ·

In general, the n-th term of an alternating series takes one of these forms:

• an = (−1)n−1bn

• an = (−1)nbn

where bn > 0 and bn = |an|. If the terms of an alternate series decrease towards 0 in magnitude,
then the series converges:

Alternating Series Test: For the alternating series
∑∞

n=1(−1)n−1bn, evaluate the following:

1. bn+1 ≤ bn for all n

2. limn→∞ bn = 0,

If both are true, the series converges.
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The alternating harmonic series

∞∑
n=1

(−1)n+1

n

converges even though the harmonic series itself diverges. This is because the terms can be rear-
ranged in a way that make the alternating signs cancel out.

Let

∞∑
n=1

an = 1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+

1

7
− 1

8
+ · · ·

be the alternating harmonic series.

It is known that
∞∑

n=1

an = ln 2.

Multiplying the series by 1
2 , we get

∞∑
n=1

1

2
an =

1

2

(
1− 1

2
+

1

3
− 1

4
+ · · ·

)
=

ln 2

2
.

Now, we define a new series
∑∞

n=1 bn such that b2n−1 = 0 and b2n = an

2 for all n ≥ 1. It also
converges:

∞∑
n=1

bn = 0 +
1

2
· 1
2
+ 0 +

1

2
· 1
4
+ 0 +

1

2
· 1
6
+ · · · = ln 2

2

By the properties of convergent series:

∞∑
n=1

(an + bn) =

∞∑
n=1

an +

∞∑
n=1

bn = ln 2 +
ln 2

2
=

3 ln 2

2
.

Now, explicitly writing out the terms of an + bn, we get

(1 + 0) +

(
−1

2
+

1

2

)
+

(
1

3
+ 0

)
+

(
−1

4
+

1

4

)
+

(
1

5
+ 0

)
+

(
−1

6
+

1

6

)
· · ·
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This simplifies to

1 +
1

3
+

1

5
+

1

7
+ · · ·

This is a rearrangement of the alternating harmonic series. Therefore,

1 +
1

3
+

1

5
+

1

7
+ · · · = 3 ln 2

2
.

Absolute and Conditional Convergence

• If
∑∞

n=1 |an| converges, we say that
∑∞

n=1 an converges absolutely.

• If
∑∞

n=1 |an| diverges and
∑∞

n=1 an converges, we say
∑∞

n=1 an converges condition-
ally. Otherwise, it diverges.

Power series, Taylor series, and Maclaurin series all follow the same basic structure; they are infinite
sums involving powers of (x− a).

• Power Series:

∞∑
n=0

cn(x− a)n

The coefficients cn can be any constants. The series is centered at a constant real number a,
and its convergence depends on x.

• Taylor Series:

∞∑
n=0

f (n)(a)

n!
(x− a)n

This is a special type of power series where the coefficient terms are determined by cn = f(n)(a)
n! .

The n-th order Taylor polynomial of f with its center at a denoted by pn(x) has the property
that its value, slope, and all derivatives up to order n match those of f at x = a. For a Taylor
series to be useful, you need to know the values of x for which the series converges and the
values of x for which the output of the series representation equals f .
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• Maclaurin Series:

∞∑
n=0

f (n)(0)

n!
xn

This is simply a Taylor series centered at a = 0.

To summarize, any Taylor series or Maclaurin series is a power series, but not every power series
can be represented as a Taylor series.

Another special case of a Taylor series is the binomial series.

For p ∈ R and k ∈ N, the binomial coefficients are defined by:

(
p

k

)
=

p(p− 1)(p− 2) · · · (p− k + 1)

k!
,

(
p

0

)
= 1.

The binomial series for f(x) = (1 + x)p is given by:

∞∑
k=0

(
p

k

)
xk,

which explicitly expands to:

1 + px+
p(p− 1)

2!
x2 +

p(p− 1)(p− 2)

3!
x3 + · · · .

This series converges for |x| < 1. In some cases, it may also converge at the endpoints depending
on p. If p ∈ Z, the series terminates after a finite number of terms and becomes a polynomial:

(x+ a)p =

p∑
k=0

(
p

k

)
xp−kak
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Now, let’s get into convergence:

Convergence of Power Series: A power series centered at a,

∞∑
n=0

cn(x− a)n,

converges in exactly one of three ways:

1. Infinite Radius of Convergence: The series converges for all x ∈ R. In this case, the
radius of convergence is R = ∞.

2. Finite, Positive Radius of Convergence: There exists a real number R > 0 such
that the series converges for all |x− a| < R and diverges for all |x− a| > R. The radius
of convergence is R ∈ N.

3. Zero Radius of Convergence: The series converges only at x = a, where the radius
of convergence is R = 0.

Convergence of Taylor Series: For a function f(x) with continuous derivatives of all orders
on an interval I that contains constant a , the Taylor series centered at a is:

f(x) =

∞∑
n=0

f (n)(a)

n!
(x− a)n

The series converges if and only if

lim
n→∞

Rn(x) = 0.

Remember that a Maclaurin series is just a special Taylor series, so this convergence test applies
for a Maclaurin series too.

These series are particularly useful in numerical methods. If you are interested, please check out
my guide: MATLAB Applications Part 1: Numerical Methods.
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2 Vectors and the Geometry of Space

Before you studied single-variable calculus, you had to first learn learn about numbers, arithmetic,
symbolic manipulation of functions, and how functions behave given certain inputs. In multivariable
calculus, we have functions that exist as surfaces in space. We will have to thus do that foundational
work all over again.

2.1 Vectors in 2D Space

We begin by studying points in R2:

R2 = {(x, y) : x, y ∈ R}

This represents the set of all ordered pairs (x, y) such that x and y are real numbers.

Points in R2 are defined as ordered pairs of real numbers:

P (x, y)

We graph point P on a 2D graph by moving x-units along the x-axis) and y-units along the y-axis).

A vector represents both magnitude and direction, written as:

x⃗ = ⟨x2 − x1, y2 − y1⟩

Vectors are denoted with an arrow above the symbol x⃗ or are lowercase and bolded x.

If no starting point is specified, we assume the vector starts at the origin (0, 0). The starting point
of a vector is known as its tail.

For a vector in R2

x⃗ = ⟨x, y⟩,

x is the first component and y is the second component.
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EXAMPLE 2.1

Draw vector x⃗ =
−−→
QP with Q(1, 1) and P (5, 4) and then interpret the result.

Solution:

We compute

x⃗ = ⟨5− 1, 4− 1⟩ = ⟨4, 3⟩.

And then we graph:

x

y

1 2 3 4 5 6

1

2

3

4

5

Q

P

x⃗

The vector x⃗ = ⟨4, 3⟩ represents the displacement from point Q to point P . It means:

• Move 4 units in the x-direction (to the right).

• Move 3 units in the y-direction (upward).

Thus, x⃗ describes the exact movement required to go from Q to P in the plane.

There are infinitely many vectors that have the same components 〈4,3〉, but they differ by
their starting point. Our tail is Q and our head is P .
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Let x⃗ =
−−−→
P1P2 where P1 = (x1, y1) and P2 = (x2, y2). This is computed as x⃗ = ⟨x2−x1, y2−y1⟩.

The graph looks as follows:

x

y

P1

P2

a

b
x⃗

x1 x2

y1

y2

Thus, x⃗ = ⟨a, b⟩ where a = x2−x1 and b = y2− y1. We go a units over and b units up. This should
remind you of slope. We can then use the Pythagorean theorem to find the magnitude of x⃗:

By the Pythagorean theorem, we have:

c2 = a2 + b2

c2 = (x2 − x1)
2 + (y2 − y1)

2

c =
√
(x2 − x1)2 + (y2 − y1)2

This gives the distance between points P1 and P2.

Next, we can say

∥x⃗∥2 =
√
a2 + b2

where ∥x⃗∥2 denotes the 2-norm (also called the magnitude or length) of vector x⃗.
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EXAMPLE 2.2

Find and graph ∥x⃗∥2 where x⃗ =
−−→
QP with Q(1, 1), P (5, 4).

Solution:

x⃗ = ⟨5− 1, 4− 1⟩

= ⟨4, 3⟩

∥x⃗∥22 = 42 + 32

∥x⃗∥22 =
√
25 = 5

And the graph looks like this:

x

y

4

3
5

The magnitude of the vector is 5 in the direction ⟨4, 3⟩.

Recall that the 2-norm operation maps vectors in R2 to real numbers. That is,

∥ · ∥2 : R2 → R.

This means it takes a vector in R2 and outputs a real number representing its magnitude.

We now define a new operation called vector addition:

+ : R2 × R2 → R2

This map takes in two vectors in R2 and outputs a new vector in R2.
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Let

x⃗ = ⟨x1, y1⟩ and y⃗ = ⟨x2, y2⟩.

Then,

x⃗+ y⃗ = ⟨x1, y1⟩+ ⟨x2, y2⟩ = ⟨x1 + x2, y1 + y2⟩.

We can visualize these using the triangle law and the parallelogram law:

x

y

x⃗

y⃗x⃗+ y⃗

x1

y1

x1 + x2

y1 + y2

x

y

x⃗

y⃗

x⃗+ y⃗

(x1, y1)

(x2, y2)

(x1 + x2, y1 + y2)

x2 x1 x1 + x2

y1

y2

y1 + y2

y⃗

x⃗

Triangle Law of Vector Addition Parallelogram Law of Vector Addition

In the triangle law, you place the vectors tip-to-tail. The sum is the line connecting the tip and
head.

In the parallelogram method, both vectors start at the same point. The sum lies along the diagonal
of the parallelogram.

The parallelogram law is also a geometric proof that tells us that vector addition is commutative.
Both paths of the parallelogram lead to the same result. That is, x⃗+ y⃗ = y⃗ + x⃗.
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EXAMPLE 2.3

Let x⃗ = ⟨4, 1⟩ and y⃗ = ⟨1, 3⟩. Find x⃗+ y⃗ and graph the vectors using the triangle law.

Solution:

x⃗+ y⃗ = ⟨4, 1⟩+ ⟨1, 3⟩

= ⟨4 + 1, 1 + 3⟩

= ⟨5, 4⟩

Let’s visualize using the triangle law:

x

y

1 2 3 4 5 6

1

2

3

4

x⃗

y⃗x⃗+ y⃗

(0, 0)

(4, 1)

(5, 4)

We now introduce a third operation called scalar-vector multiplication. This operation takes a
real number (called a scalar) and a vector in R2, and produces another vector in R2.

The operation is defined as follows:

· : R× R2 −→ R2

That is, scalar-vector multiplication maps a scalar and a vector to a new vector.

Let c ∈ R and x⃗ ∈ R2 with x⃗ = ⟨x1, y1⟩.

Then,

c · x⃗ = c · ⟨x1, y1⟩

= ⟨c · x1, c · y1⟩ = ⟨cx1, cy1⟩
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EXAMPLE 2.4

Multiply c = 2 by x⃗ = ⟨1, 1⟩. Then, reverse the direction of x⃗.

Solution:

2 · x⃗ = 2 · ⟨1, 1⟩

= ⟨2 · 1, 2 · 1⟩

= ⟨2, 2⟩

We can reverse the direction multiplying by −1:

−1 · x⃗ = −1 · ⟨1, 1⟩

= ⟨−1 · 1,−1 · 1⟩

= ⟨−1,−1⟩

Now, let’s visualize it graphically:

x

y

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

x⃗

2x⃗

−x⃗

Two vectors x⃗ and y⃗ with an initial point at the origin are in the same direction if and only if
x⃗ = c · y⃗ for some scalar c ∈ R.
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The operation of vector subtraction is defined as:

− : R2 × R2 −→ R2

That is, vector subtraction maps two vectors in R2 to their difference, producing a new vector in
R2.

We have

x⃗− y⃗ = ⟨x1, y1⟩ − ⟨x2, y2⟩

This can be rewritten using scalar multiplication:

x⃗+ (−1) · y⃗ = ⟨x1, y1⟩+ (−1) · ⟨x2, y2⟩

= ⟨x1, y1⟩+ ⟨−x2,−y2⟩

= ⟨x1 − x2, y1 − y2⟩

Thus, subtracting two vectors simply means subtracts their components.

y⃗

x⃗

x⃗− y⃗

x⃗

y⃗

y⃗ − x⃗

We say two vectors are equal if and only if they are equal in magnitude and direction. That is,

x⃗ = y⃗

x⃗− y⃗ = 0 = ⟨0, 0⟩

∥x⃗− y⃗∥2 = 0
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2.2 Vectors in 3D Space

In single-variable calculus, recall how we did this:

d

dx
[F (x)] = f(x) = F ′(x)

where we grouped the input and output of F (x) into ordered pairs (x, f(x)).

We now introduce functions of two variables:

z = F (x, y)

This function takes two inputs, x and y, and produces an output z.

If we group the input and output together, we get an ordered triple:

(x, y, z) = (x, y, F (x, y))

This represents a point in R3.

To graph an ordered triplet (x, y, z), we need to draw three orthogonal axes (perpendicular to
each other) that intersect at the origin. This system is known as a three-dimensional Euclidean
space R3:

https://rhoclouds.github.io


https://rhoclouds.github.io 39

A fundamental part of this is understanding the three main coordinate planes. These planes act
as ”boundaries” between positive and negative regions of space and are where one of the three
coordinates is zero.

xy-plane:

z = 0 ⇒
{
(x, y, z) ∈ R3 : z = 0

}
=
{
(x, y, 0) : x, y ∈ R

}
.

yz-plane:

x = 0 ⇒
{
(x, y, z) ∈ R3 : x = 0

}
=
{
(0, y, z) : y, z ∈ R

}
.

xz-plane:

y = 0 ⇒
{
(x, y, z) ∈ R3 : y = 0

}
=
{
(x, 0, z) : x, z ∈ R

}
.

The Three Coordinate Planes in R3

In the current orientation facing out of the page, you can think of the xz-plane like the right wall
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of a house, the yz-plane the left wall, and the xy-plane the floor.

These surfaces are hugely important when graphing because visualizing functions of multiple vari-
ables can often be a challenge.

EXAMPLE 2.5

Graph the points O(0, 0, 0) and P (5, 3, 4).

Solution:

To locate point P , we move

• 5 units along the x-axis,

• 3 units along the y-axis, and

• 4 units upward along the z-axis.

We can then use dotted lines to connect P to the coordinate planes. This forms a rectangular
prism that shows how P projects onto the three planes. Let’s now graph:
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EXAMPLE 2.5 (CONTINUED)

Please run the MATLAB code yourself and have a look!

figure

hold on

axis equal

grid on

xlim ([0 6])

ylim ([0 6])

zlim ([0 6])

plot3(5, 3, 4, 'ko', 'MarkerFaceColor ', 'k', 'MarkerSize ', 8)

line ([0 5], [0 0], [0 0], 'LineStyle ', ':', 'Color ', [0.5 0 0], 'LineWidth ',
1.5)

line ([5 5], [0 3], [0 0], 'LineStyle ', ':', 'Color ', [0.5 0 0], 'LineWidth ',
1.5)

line ([5 5], [3 3], [0 4], 'LineStyle ', ':', 'Color ', [0.5 0 0], 'LineWidth ',
1.5)

line ([0 0], [0 3], [0 0], 'LineStyle ', ':', 'Color ', [0.5 0 0], 'LineWidth ',
1.5)

line ([0 0], [0 0], [0 4], 'LineStyle ', ':', 'Color ', [0.5 0 0], 'LineWidth ',
1.5)

line ([0 0], [3 3], [0 4], 'LineStyle ', ':', 'Color ', [0.5 0 0], 'LineWidth ',
1.5)

line ([5 5], [0 0], [0 4], 'LineStyle ', ':', 'Color ', [0.5 0 0], 'LineWidth ',
1.5)

line ([0 5], [3 3], [0 0], 'LineStyle ', ':', 'Color ', [0.5 0 0], 'LineWidth ',
1.5)

line ([0 5], [0 0], [4 4], 'LineStyle ', ':', 'Color ', [0.5 0 0], 'LineWidth ',
1.5)

line ([0 0], [0 3], [4 4], 'LineStyle ', ':', 'Color ', [0.5 0 0], 'LineWidth ',
1.5)

line ([5 5], [0 3], [4 4], 'LineStyle ', ':', 'Color ', [0.5 0 0], 'LineWidth ',
1.5)

line ([0 5], [3 3], [4 4], 'LineStyle ', ':', 'Color ', [0.5 0 0], 'LineWidth ',
1.5)

quiver3(0, 0, 0, 6, 0, 0, 'k', 'LineWidth ', 1.5)

quiver3(0, 0, 0, 0, 6, 0, 'k', 'LineWidth ', 1.5)

quiver3(0, 0, 0, 0, 0, 6, 'k', 'LineWidth ', 1.5)

set(gca , 'XTick ', 0:1:6, 'YTick ', 0:1:6, 'ZTick ', 0:1:6, ...

'FontSize ', 12, 'TickLabelInterpreter ', 'latex ')

text (6.3, 0, 0, '$x$', 'Interpreter ', 'latex ', 'FontSize ', 14)

text(0, 6.3, 0, '$y$', 'Interpreter ', 'latex ', 'FontSize ', 14)

text(0, 0, 6.3, '$z$', 'Interpreter ', 'latex ', 'FontSize ', 14)

text (5.2, 3, 4, '$P(5,3,4)$', 'Interpreter ', 'latex ', 'FontSize ', 12)

text(-0.5, -0.5, -0.5, '$O$', 'Interpreter ', 'latex ', 'FontSize ', 12)

view(45, 30)

box on

ex2point5plot.m


figure
hold on
axis equal
grid on

xlim([0 6])
ylim([0 6])
zlim([0 6])

plot3(5, 3, 4, 'ko', 'MarkerFaceColor', 'k', 'MarkerSize', 8)

line([0 5], [0 0], [0 0], 'LineStyle', ':', 'Color', [0.5 0 0], 'LineWidth', 1.5)
line([5 5], [0 3], [0 0], 'LineStyle', ':', 'Color', [0.5 0 0], 'LineWidth', 1.5)
line([5 5], [3 3], [0 4], 'LineStyle', ':', 'Color', [0.5 0 0], 'LineWidth', 1.5)
line([0 0], [0 3], [0 0], 'LineStyle', ':', 'Color', [0.5 0 0], 'LineWidth', 1.5)
line([0 0], [0 0], [0 4], 'LineStyle', ':', 'Color', [0.5 0 0], 'LineWidth', 1.5)
line([0 0], [3 3], [0 4], 'LineStyle', ':', 'Color', [0.5 0 0], 'LineWidth', 1.5)
line([5 5], [0 0], [0 4], 'LineStyle', ':', 'Color', [0.5 0 0], 'LineWidth', 1.5)
line([0 5], [3 3], [0 0], 'LineStyle', ':', 'Color', [0.5 0 0], 'LineWidth', 1.5)
line([0 5], [0 0], [4 4], 'LineStyle', ':', 'Color', [0.5 0 0], 'LineWidth', 1.5)
line([0 0], [0 3], [4 4], 'LineStyle', ':', 'Color', [0.5 0 0], 'LineWidth', 1.5)
line([5 5], [0 3], [4 4], 'LineStyle', ':', 'Color', [0.5 0 0], 'LineWidth', 1.5)
line([0 5], [3 3], [4 4], 'LineStyle', ':', 'Color', [0.5 0 0], 'LineWidth', 1.5)

quiver3(0, 0, 0, 6, 0, 0, 'k', 'LineWidth', 1.5)
quiver3(0, 0, 0, 0, 6, 0, 'k', 'LineWidth', 1.5)
quiver3(0, 0, 0, 0, 0, 6, 'k', 'LineWidth', 1.5)

set(gca, 'XTick', 0:1:6, 'YTick', 0:1:6, 'ZTick', 0:1:6, ...
    'FontSize', 12, 'TickLabelInterpreter', 'latex')

text(6.3, 0, 0, '$x$', 'Interpreter', 'latex', 'FontSize', 14)
text(0, 6.3, 0, '$y$', 'Interpreter', 'latex', 'FontSize', 14)
text(0, 0, 6.3, '$z$', 'Interpreter', 'latex', 'FontSize', 14)
text(5.2, 3, 4, '$P(5,3,4)$', 'Interpreter', 'latex', 'FontSize', 12)
text(-0.5, -0.5, -0.5, '$O$', 'Interpreter', 'latex', 'FontSize', 12)

view(45, 30)
box on
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We now extend the Pythagorean theorem into three dimensions to define the 2-norm of a vector in
R3.

Let P1 = (x1, y1, z1) and P2 = (x2, y2, z2) be two points in R3. We define the vector x⃗ from P1 to
P2 as:

x⃗ =
−−−→
P1P2 = ⟨x2 − x1, y2 − y1, z2 − z1⟩

The 2-norm of x⃗ measures the straight-line distance between P1 and P2. We will analyze two right
triangles as seen in this graph:
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(x2, y2, z1) (x2, y1, z1)

(x1, y1, z1)

b

ac

Triangle 2: Projection onto xy-plane to
compute horizontal distance b

(x1, y1, z1) (x2, y2, z1)

(x2, y2, z2)

c

z
d

Triangle 1: Vertical slice showing the full
distance

Let’s begin solving for the 2-norm. We are trying to find d = ∥x⃗∥2.

By the Pythagorean theorem, we can see that a = x2−x1 and b = y2−y1 in Triangle 1. In Triangle
2, we can see that d2 = c2 + z2 where z = z2 − z1. Thus d

2 = a2 + b2 + z2 = ∥x⃗∥22. From that, we
can substitute in our values for a, b, c and then simplify:

∥x⃗∥22 = (x2 − x1)
2 + (y2 − y1)

2 + (z2 − z1)
2

∥x⃗∥2 =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2

Similarly to last time, we assume that the initial point of a vector is at the origin (0, 0, 0) unless
otherwise stated.

EXAMPLE 2.6

Find ∥x⃗∥2 where x⃗ =
−−→
PQ and P (2,−1, 7) and Q(1,−3, 5).

Solution:

x⃗ = ⟨1− 2, −3− (−1), 5− 7⟩
= ⟨−1, −2, −2⟩

∥x⃗∥2 =
√
(−1)2 + (−2)2 + (−2)2

=
√
1 + 4 + 4

=
√
9 = 3
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The 2-norm is defined as the following mapping:

∥ · ∥2 : R3 → R,

which means it takes a vector from R3 and maps it to a real number representing its magnitude.

For a vector x⃗ = ⟨x1, y1, z1⟩, we define the 2-norm by

∥x⃗∥2 =
√

x2
1 + y21 + z21

Then, we can say that ∥x⃗∥22 = x2
1 + y21 + z21 .

Let’s move on to vector addition and scalar-vector multiplication in R3.

We define vector addition as a binary operation:

+ : R3 × R3 −→ R3

This operation takes two vectors in R3 and outputs another vector in R3.

Explicitly, for vectors

x⃗ = ⟨x1, y1, z1⟩ and y⃗ = ⟨x2, y2, z2⟩,

their sum is given by

x⃗ +︸︷︷︸
(a)

y⃗ = ⟨x1, y1, z1⟩ +︸︷︷︸
(a)

⟨x2, y2, z2⟩

= ⟨x1 +︸︷︷︸
(b)

x2, y1 +︸︷︷︸
(b)

y2, z1 +︸︷︷︸
(b)

z2⟩.

The addition denoted by (a) refers to adding entire vectors whereas (b) refers to scalar addition.
One vector addition in R3 thus corresponds to three scalar additions in R. This rule also scales to
any number of dimensions; vector addition in Rn corresponds to n scalar additions in R.
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EXAMPLE 2.7

Find x⃗+ y⃗ where x⃗ = ⟨1, 0, 1⟩ and y⃗ = ⟨−1, 1, 3⟩.

Solution:

x⃗+ y⃗ = ⟨1, 0, 1⟩+ ⟨−1, 1, 3⟩

= ⟨1 + (−1), 0 + 1, 1 + 3⟩

= ⟨0, 1, 4⟩

We will now define scalar-vector multiplication:

· : R× R3 −→ R3

Let c ∈ R and x⃗ ∈ R3 with x⃗ = ⟨x1, y1, z1⟩. Then

c · x⃗ = c · ⟨x1, y1, z1⟩ = ⟨c · x1, c · y1, c · z1⟩.

EXAMPLE 2.8

Let z⃗ = ⟨1,−1, 3⟩. Find (a) 0 · z⃗ and (b) −1 · z⃗.

Solution:

(a) 0 · z⃗ = 0 · ⟨1,−1, 3⟩ = ⟨0 · 1, 0 · (−1), 0 · 3⟩ = ⟨0, 0, 0⟩.

Multiplying any vector by zero produces the zero vector.

(b) −1 · z⃗ = −1 · ⟨1,−1, 3⟩ = ⟨(−1) · 1, (−1) · (−1), (−1) · 3⟩ = ⟨−1, 1,−3⟩.

Multiplying a vector by −1 reverses its direction.
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Two nonzero vectors x⃗ and y⃗ point in the same direction if there exists a scalar c such that:

x⃗ = cy⃗

where if c > 0, x⃗ points in the same direction as y⃗, scaled by |c|. If c < 0, x⃗ points in the opposite
direction, scaled by |c|. Furthermore, we can say that

• If c > 0, the vectors have the same direction and orientation.

• If c < 0, the vectors have the same direction but opposite orientation.

A circle in R2 is defined as the collection of points in the plane that lie at a fixed distance r from
a given center (h, k).

Formally,

C =
{
(x, y) :

√
(x− h)2 + (y − k)2 = r

}
.

From this, we can get the standard equation of a circle

(x− h)2 + (y − k)2 = r2.

We can generalize circles in R2 as spheres in R3. We define a sphere as the set of all points (x, y, z)
that are r units away from the center of our sphere (h, k, l). That is,
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S =
{
(x, y, z) ∈ R3 :

√
(x− h)2 + (y − k)2 + (z − l)2 = r

}
.

We can express the sphere centered at (h, k, l) with radius r in two equivalent forms.

First, in normalized form:

S =

{
(x, y, z) ∈ R3 :

(x− h)2

r2
+

(y − k)2

r2
+

(z − l)2

r2
= 1

}

This shows the sphere as a collection of points in R3.

Equivalently, we can write the sphere in its standard implicit form:

(x− h)2 + (y − k)2 + (z − l)2 = r2

Let’s stop to think about scalars and vectors in the real world. Recall that scalars only have
magnitude while vectors have magnitude and direction. For instance, take mass. A block with
a mass of 12 kg has a magnitude of 12 but kilograms do not have a direction. Thus, mass is a
scalar. On the other hand, take weight. A block that weighs 5N has a magnitude of 5 and also
has a direction. Weight is gravitational force, so gravity is exerting a force on the block 5N in
the direction of the center of the Earth. Thus, weight is a vector. Length, area, volume, speed,
mass, density, pressure, work, power, temperature, energy, entropy, electric current, and time are all
examples of scalar quantities. Displacement, velocity, acceleration, momentum, force, drag, weight,
and electric field are all examples of vector quantities.
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Properties of Vectors

Let vectors a⃗, b⃗, c⃗ ∈ Rn and scalars c, d ∈ R. Then, the following properties hold:

1. Commutative property: a⃗+ b⃗ = b⃗+ a⃗

2. Associative property: (⃗a+ b⃗) + c⃗ = a⃗+ (⃗b+ c⃗)

3. Additive identity property: a⃗+ 0⃗ = a⃗

4. Additive inverse property: a⃗+ (−a⃗) = 0⃗

5. Distributive property for scalars: c(⃗a+ b⃗) = ca⃗+ c⃗b

6. Distributive property across scalars: (c+ d)⃗a = ca⃗+ da⃗

7. Associative property for scalar multiplication: c(da⃗) = (cd)⃗a

8. Multiplicative identity: 1 · a⃗ = a⃗

In three-dimensional space, the vectors

i = ⟨1, 0, 0⟩, j = ⟨0, 1, 0⟩, k = ⟨0, 0, 1⟩

are called the standard basis vectors. These vectors each have length 1 and point in the directions
of the positive x-axis, y-axis, and z-axis, respectively.

A vector a⃗ = ⟨a1, a2, a3⟩ in R3 can be expressed as a linear combination of these basis vectors:

a⃗ = a1i+ a2j+ a3k

EXAMPLE 2.9

Let a⃗ = i+ 2j− 3k and b⃗ = 4i+ 7k. Express the vector 2a⃗+ 3⃗b in terms of i, j, and k.

Solution:

2a⃗+ 3⃗b = 2(i+ 2j− 3k) + 3(4i+ 7k)

= 2i+ 4j− 6k+ 12i+ 21k

= (2 + 12)i+ 4j+ (−6 + 21)k

= 14i+ 4j+ 15k
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A unit vector is a vector of length 1. The standard basis vectors i,k, and k are all unit vectors.
Given a nonzero vector a⃗, we can create a unit vector in its direction by dividing by its norm:

u =
1

∥a⃗∥
a⃗ =

a⃗

∥a⃗∥

To verify this, let c = 1
∥a⃗∥ . Then u = ca⃗ and c is a positive scalar, so u has the same direction as

a⃗. We can also find unit length:

∥u∥ = ∥ca⃗∥ = ∥c∥∥a⃗∥ =
1

∥a⃗∥
∥a⃗∥ = 1

The process of finding unit vectors is known as normalization. To do this, you use scalar multi-
plication. Let’s go through a few examples:

EXAMPLE 2.10

Find the unit vector u in the direction of a⃗ = 2i− j− 2k.

Solution:

First, let’s find the length of the given vector:

∥a⃗∥ =
√
22 + (−1)2 + (−2)2 =

√
4 + 1 + 4 =

√
9 = 3

Thus, we divide by length to get

u =
1

3
⟨2i,−1j,−2k⟩ =

〈
2

3
,−1

3
,−2

3

〉
.
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EXAMPLE 2.11

Let v⃗ = ⟨9, 2⟩. Find a vector with magnitude 5 that points in the opposite direction of v⃗.

Solution:

First, we compute the magnitude of v⃗:

∥v⃗∥ =
√

92 + 22 =
√
85

Then, the unit vector in the direction of v⃗ is:

1√
85

⟨9, 2⟩ =
〈

9√
85

,
2√
85

〉

To get a vector with magnitude 5 in the opposite direction, we multiply by −5:

−5 ·
〈

9√
85

,
2√
85

〉
=

〈
−45√
85

,
−10√
85

〉

Thus, the desired vector is:

〈
−45√
85

,
−10√
85

〉
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EXAMPLE 2.12

Let a⃗ = ⟨16,−11⟩ and let b⃗ be a unit vector that forms an angle of 225◦ with the positive

x-axis. Express a⃗ and b⃗ in terms of the standard unit vectors i and j.

Solution:

We can write a⃗ as a⃗ = 16i− 11j. Next, since b⃗ is a unit vector at angle 225◦, we can express
it as b⃗ = cos 225◦ i+ sin 225◦ j.

Evaluating, we get cos 225◦ = −
√
2
2 and sin 225◦ = −

√
2
2 . Substituting,

b⃗ = −
√
2

2
i−

√
2

2
j.

Finally, we have the following:

a⃗ = 16i− 11j

b⃗ = −
√
2

2
i−

√
2

2
j

2.3 The Dot Product

We now have a very important operation in R2 and R3 called the inner product, or more specifically
the dot product. The dot product serves as a ”multiplication” operation between vectors:

· : R2 × R2 −→ R

· : R3 × R3 −→ R
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Definition: If u⃗ = ⟨u1, u2, u3⟩ and v⃗ = ⟨v1, v2, v3⟩, then the dot product of u⃗ and v⃗ is

u⃗ · v⃗ = u1v1 + u2v2 + u3v3.

Properties of the Dot Product: For vectors u⃗, v⃗, w⃗ and scalar c, the following hold:

1. u⃗ · u⃗ = |u⃗|2

2. u⃗ · v⃗ = v⃗ · u⃗

3. u⃗ · (v⃗ + w⃗) = u⃗ · v⃗ + u⃗ · w⃗

4. (cu⃗) · v⃗ = c(u⃗ · v⃗) = u⃗ · (cv⃗)

5. 0⃗ · u⃗ = 0

EXAMPLE 2.13

Compute a⃗ · b⃗, where a⃗ = ⟨2, 9,−1⟩ and b⃗ = ⟨−3, 1,−4⟩.

Solution:

We apply the definition of the dot product:

u⃗ · v⃗ = (2)(−3) + (9)(1) + (−1)(−4)

= −6 + 9 + 4

= 7
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We can use the dot product to find the angle between two vectors. Let’s say we have a triangle of
vectors a⃗, b⃗, and a⃗− b⃗:

The norms of the values on each of the three sides would give you the side lengths of the triangle.
Applying the law of cosines here gives

∥⃗b− a⃗∥2 = ∥a⃗∥2 + ∥⃗b∥2 − 2∥a⃗∥∥⃗b∥ cos θ.

We can rewrite the left-hand side using the dot product:

∥⃗b− a⃗∥2 = (⃗b− a⃗) · (⃗b− a⃗)

= b⃗ · b⃗− b⃗ · a⃗− a⃗ · b⃗+ a⃗ · a⃗

= ∥⃗b∥2 − 2a⃗ · b⃗+ ∥a⃗∥2

Substituting into the law of cosines yields the following:

∥⃗b∥2 − 2a⃗ · b⃗+ ∥a⃗∥2 = ∥a⃗∥2 + ∥⃗b∥2 − 2∥a⃗∥∥⃗b∥ cos θ

−2a⃗ · b⃗ = −2∥a⃗∥∥⃗b∥ cos θ

a⃗ · b⃗ = ∥a⃗∥∥⃗b∥ cos θ

Thus, for an angle θ between two vectors a⃗ and b⃗, we have

a⃗ · b⃗ = |⃗a| |⃗b| cos θ.
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And to find the angle between two nonzero vectors,

cos θ =
a⃗ · b⃗
|⃗a| |⃗b|

.

EXAMPLE 2.14

Find angle in radians formed by the vectors a⃗ = ⟨1, 2, 0⟩ and b⃗ = ⟨2, 4, 1⟩.

Solution:

First, we compute the dot product

a⃗ · b⃗ = (1)(2) + (2)(4) + (0)(1) = 2 + 8 + 0 = 10.

Next, we can compute the magnitudes:

∥a⃗∥ =
√
12 + 22 + 02 =

√
5

∥⃗b∥ =
√

22 + 42 + 12 =
√
21

Finally, we can compute θ.

cos θ =
10√
105

⇒ θ = cos−1

(
10√
105

)
.

Thus, the angle is approximately 0.22 radians.
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Two vectors a⃗ and b⃗ are orthogonal (perpendicular) if and only if

a⃗ · b⃗ = 0

We will prove this. Let a⃗ and b⃗ be nonzero vectors with angle θ between them. First, assume
a⃗ · b⃗ = 0. Then

∥a⃗∥∥⃗b∥ cos θ = 0.

For ∥a⃗∥ ≠ 0 and ∥⃗b∥ ≠ 0, we must have cos θ = 0. Thus, θ = 90◦, and the vectors are now
orthogonal.

Now we can assume a⃗ and b⃗ are orthogonal. Plugging in θ = 90◦ gets us

a⃗ · b⃗ = ∥a⃗∥∥⃗b∥ cos θ

= ∥a⃗∥∥⃗b∥ cos 90◦

= ∥a⃗∥∥⃗b∥(0)

= 0.

If two vectors a⃗ and b⃗ are orthogonal, we write a⃗ ⊥ b⃗. Orthogonal vectors will always form a right
angle when their initial points are aligned.

EXAMPLE 2.15

For which value of x is a⃗ = ⟨2, 8,−1⟩ orthogonal to b⃗ = ⟨x,−1, 2⟩?

Solution:

Since a⃗ and b⃗ are orthogonal, we must have a⃗ · b⃗ = 0:

a⃗ · b⃗ = (2)(x) + (8)(−1) + (−1)(2) = 2x− 10

2x− 10 = 0 ⇒ x = 5
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The angles a nonzero vector makes with each of the coordinate axes are called the direction angles
α, β, and γ. These are very important in real-world applications. For example, in engineering, you
can use direction angles to carefully calculate the orientation of a robot or the trajectory of a missile.
The cosines of the direction angles are called direction cosines. In the following image, angle α
is formed by vector v⃗ and unit vector i, angle β is formed by vector v⃗, and unit vector j, and angle
γ is formed by vector v⃗ and unit vector k:

Direction angles α, β, and γ. Image credit: Strang & Herman

Let’s find the general form. For a nonzero vector a⃗, we have the following:

cosα =
a⃗ · i

∥a⃗∥∥i∥
=

a1
∥a⃗∥

, cosβ =
a⃗ · j

∥a⃗∥∥j∥
=

a2
∥a⃗∥

, cos γ =
a⃗ · k

∥a⃗∥∥k∥
=

a3
∥a⃗∥

Squaring and adding these equations, we obtain

cos2 α+ cos2 β + cos2 γ = 1.

We can then acquire

a⃗ = ⟨a1, a2, a3⟩
= ⟨∥a⃗∥ cosα, ∥a⃗∥ cosβ, ∥a⃗∥ cos γ⟩
= ∥a⃗∥⟨cosα, cosβ, cos γ⟩. (1)
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Thus, the unit vector in the direction of a⃗ can be written as

a⃗

∥a⃗∥
= ⟨cosα, cosβ, cos γ⟩

Adding two vectors together creates a resultant vector. But if we need to break a vector down into
its components, we can use vector projections.

The scalar projection of b⃗ onto a⃗, also called the component of b⃗ along a⃗, measures the
magnitude of the projection of b⃗ in the direction of a⃗. It is given by

compa⃗ b⃗ =
a⃗ · b⃗
∥a⃗∥

.

The vector projection of b⃗ onto a⃗ gives the actual vector in the direction of a⃗ whose length
equals the scalar projection. That is, ∥ proja⃗ b⃗∥ = compa⃗ b⃗. It is computed by multiplying the
scalar projection by the unit vector in the direction of a⃗:

proja⃗ b⃗ =
a⃗ · b⃗
∥a⃗∥2

a⃗

The scalar projection and length of vector projection ∥proja⃗b⃗∥ are in green.
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EXAMPLE 2.16

Find the scalar projection and vector projection of b⃗ = ⟨1, 1, 2⟩ onto a⃗ = ⟨−2, 3, 1⟩.

Solution:

We first compute the magnitude of a⃗ which is ∥a⃗∥ =
√
(−2)2 + 32 + 12 =

√
14.

Now we compute the scalar projection:

compa⃗ b⃗ =
(−2)(1) + 3(1) + 1(2)√

14
=

3√
14

We can now use this to find the vector projection

proja⃗ b⃗ =
compa⃗ b⃗

∥a⃗∥
a⃗ =

3√
14

· a⃗√
14

=
3

14
a⃗ =

3

14
⟨−2, 3, 1⟩ = ⟨−3

7
,
9

14
,
3

14
⟩.
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Vectors can also be used to represent quantities of items. As a matter of fact, the idea of using
vectors to store data is one of the most powerful in the modern day. You will revisit this in linear
algebra.

EXAMPLE 2.17

A local market sells bread, milk, eggs, and apples. They pay $0.25 per loaf of bread, $0.25
per bottle of milk, $0.50 per dozen eggs, and $0.20 per apple. Bread sells for $2.50 , milk for
$1.50, eggs for $4.50, and apples for $1.25. Last year, the market sold 1258 loaves of bread,
342 bottles of milk, 2426 dozens of eggs, and 1354 apples. Use vectors and dot products to
compute last year’s total sales and profit.

Solution:

The cost, price, and quantity vectors are:

c⃗ = (0.25, 0.25, 0.50, 0.20), p⃗ = (2.50, 1.50, 4.50, 1.25), q⃗ = (1258, 342, 2426, 1354)

Total sales are given by

p⃗ · q⃗ = (2.50, 1.50, 4.50, 1.25) · (1258, 342, 2426, 1354)

= $3145 + $513 + $10917 + $1692.5 = $16267.5

Total cost is given by

c⃗ · q⃗ = (0.25, 0.25, 0.50, 0.20) · (1258, 342, 2426, 1354)

= $314.5 + $85.5 + $1213 + $270.8 = $1883.8

Profit:

p⃗ · q⃗ − c⃗ · q⃗ = 16267.5− 1883.8 = 14383.7

Thus, the market made $14,383.70 in profit last year.
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EXAMPLE 2.18

Express b⃗ = ⟨8,−3,−3⟩ as a sum of orthogonal vectors such that one of the vectors has the
same direction as a⃗ = ⟨2, 3, 2⟩.

Solution:

Let p⃗ represent the projection of b⃗ onto a⃗:

p⃗ = proja⃗ b⃗ =
a⃗ · b⃗
∥a⃗∥2

a⃗ =
⟨2, 3, 2⟩ · ⟨8,−3,−3⟩

∥⟨2, 3, 2⟩∥2
⟨2, 3, 2⟩

=
16− 9− 6

22 + 32 + 22
⟨2, 3, 2⟩ = 1

17
⟨2, 3, 2⟩ =

〈
2

17
,
3

17
,
2

17

〉

Then,

q⃗ = b⃗− p⃗ = ⟨8,−3,−3⟩ −
〈

2

17
,
3

17
,
2

17

〉
=

〈
134

17
,
−54

17
,
−53

17

〉
.

To check our work, we can verify that p⃗ and q⃗ are orthogonal using the dot product:

p⃗ · q⃗ =

〈
2

17
,
3

17
,
2

17

〉
·
〈
134

17
,
−54

17
,
−53

17

〉

=
268

289
+

−162

289
+

−106

289
= 0

Then,

b⃗ = p⃗+ q⃗ =

〈
2

17
,
3

17
,
2

17

〉
+

〈
134

17
,
−54

17
,
−53

17

〉
.
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One of the most common applications of dot products is in physics when we want to calculate work.
Work W is done by a force when it transfers energy to move an object. For a constant force F that
moves an object over a distance d, the formula is W = Fd. However, this only works when the

force acts in the same direction as the object being displaced. If the displacement vector D⃗ =
−−→
PQ

is pointing in a different direction and gets the object from point P to point Q, the work done by
the force F⃗ acts at an angle θ and is given by

W = F⃗ ·
−−→
PQ = ∥F⃗∥∥

−−→
PQ∥ cos θ.

EXAMPLE 2.19

A car is being pulled a distance of 100m along a horizontal path that goes from point P to
point Q by a constant force of 5000N. The rope is held at an angle of θ = 45◦.

Solution:

The work done by the force is:

W = ∥F⃗∥ ∥
−−→
PQ∥ cos θ = (5000N)(100m)(cos 45◦) = 353553.4 J

https://rhoclouds.github.io


https://rhoclouds.github.io 62

2.4 The Cross Product

The cross product mapping is as follows:

× : R3 × R3 −→ R3

It can be used to take two vectors in R3 and output a third vector in R3 that is orthogonal to the
original two vectors.

Given two nonzero vectors a⃗ = ⟨a1, a2, a3⟩ and b⃗ = ⟨b1, b2, b3⟩. Let c⃗ = ⟨c1, c2, c3⟩. Then we have

a⃗ · c⃗ = 0 and b⃗ · c⃗ = 0.

That is,

a1c1 + a2c2 + a3c3 = 0,

b1c1 + b2c2 + b3c3 = 0.

To eliminate c3, we multiply the first equation by b2 and the second by a2, then subtract:

(a1b2 − a2b1)c1 + (a3b2 − a2b3)c3 = 0

This has the form pc1 + qc3 = 0. Solving, we get c1 = −q and c3 = p. Thus,

c1 = a2b3 − a3b2

c2 = a3b1 − a1b3

We then substitute in those results to get

c3 = a1b2 − a2b1.

The resulting vector is:

c⃗ = ⟨a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1⟩.

This is called the cross product of a⃗ and b⃗, which we write as a⃗× b⃗.

https://rhoclouds.github.io


https://rhoclouds.github.io 63

Definition: If u⃗ = ⟨u1, u2, u3⟩ and v⃗ = ⟨v1, v2, v3⟩, then the cross product of u⃗ and v⃗ is

u⃗× v⃗ = ⟨u2v3 − u3v2, u3v1 − u1v3, u1v2 − u2v1⟩.

Properties of the Cross Product: For vectors u⃗, v⃗, w⃗, and scalar c, the following hold:

1. u⃗× v⃗ = −(v⃗ × u⃗)

2. u⃗× (v⃗ + w⃗) = u⃗× v⃗ + u⃗× w⃗

3. c(u⃗× v⃗) = (cu⃗)× v⃗ = u⃗× (cv⃗)

4. u⃗× 0⃗ = 0⃗× u⃗ = 0⃗

5. u⃗× u⃗ = 0⃗

6. u⃗ · (v⃗ × w⃗) = (u⃗× v⃗) · w⃗

7. u⃗× (v⃗ × w⃗) = (u⃗ · w⃗)v⃗ − (u⃗ · v⃗)w⃗

Notice that the cross product produces a vector, unlike the dot product which produces a scalar.
Thus, the cross product can only take vectors in R3.

The right-hand rule gives the direction of the cross product:

Image credit: Strang & Herman

Point your fingers in the direction of u⃗ and then curl your fingers in the direction of v⃗. Your thumb
now points in the direction of the cross product.
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The cross products of the standard unit vectors i, j, and k follow the rule i× i = j× j = k× k = 0⃗.
Additionally, they have some important properties:

1. i× j = k

2. j× i = −k

3. j× k = i

4. k× j = −i

5. k× i = j

6. i× k = −j

EXAMPLE 2.20

Use the properties of the cross product to compute (i× k)× (k× j), and then multiply the
result by k.

Solution:

First, we compute

i× k = −j.

Next,

k× j = −i.

Now we compute the cross product

(i× k)× (k× j) = (−j)× (−i).

This simplifies to

j× i = −k.

Now the result multiply by k:

−k× k = −0⃗ = 0⃗
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EXAMPLE 2.21

Find p⃗×q⃗ for p⃗ = ⟨5, 1, 2⟩ and q⃗ = ⟨−2, 0, 1⟩. Express the answer using standard unit vectors.

Solution:

We have

p1 = 5, p2 = 1, p3 = 2, q1 = −2, q2 = 0, and q3 = 1.

Now compute each component. The first component is

p2q3 − p3q2 = 1 · 1− 2 · 0 = 1.

The second component is

p3q1 − p1q3 = 2 · (−2)− 5 · 1 = −4− 5 = −9.

The third component is

p1q2 − p2q1 = 5 · 0− 1 · (−2) = 0 + 2 = 2.

Thus,

p⃗× q⃗ = ⟨1,−9, 2⟩.

And finally, expressed in terms of standard unit vectors, we have

p⃗× q⃗ = i− 9j+ 2k.
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The cross product of two standard unit vectors is not only equal but also parallel to the third. They
point in the same direction:

• i× j ∥ k

• i× k ∥ j

• j× k ∥ i

On the other hand, two nonzero vectors a⃗ and b⃗ are parallel if and only if a⃗× b⃗ = 0⃗.

Let a⃗ = ⟨a1, a2, a3⟩ and b⃗ = ⟨b1, b2, b3⟩ be vectors with angle θ between them. Then,

∥a⃗× b⃗∥2 = (a2b3 − a3b2)
2 + (a3b1 − a1b3)

2 + (a1b2 − a2b1)
2.

= a22b
2
3 − 2a2a3b2b3 + a23b

2
2 + a23b

2
1 − 2a1a3b1b3 + a21b

2
3 + a21b

2
2 − 2a1a2b1b2 + a22b

2
1.

= a21(b
2
2 + b23) + a22(b

2
1 + b23) + a23(b

2
1 + b22)− 2a1a2b1b2 − 2a1a3b1b3 − 2a2a3b2b3.

This simplifies to:

∥a⃗× b⃗∥2 = ∥a⃗∥2∥⃗b∥2 − (⃗a · b⃗)2.

Thus,

∥a⃗× b⃗∥2 = ∥a⃗∥2∥⃗b∥2 − ∥a⃗∥2∥⃗b∥2 cos2 θ,

= ∥a⃗∥2∥⃗b∥2(1− cos2 θ),

= ∥a⃗∥2∥⃗b∥2 sin2 θ.

Because
√
sin2 θ = sin θ for 0 ≤ θ ≤ 180◦, we obtain

∥a⃗× b⃗∥ = ∥a⃗∥ ∥⃗b∥ sin θ.

This gives the magnitude of the cross product.
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We can express the cross product using the far easier determinant notation:

a⃗× b⃗ =

∣∣∣∣∣∣∣∣∣
i j k

a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣∣∣∣
This determinant expands as:

a⃗× b⃗ = i

∣∣∣∣∣∣a2 a3

b2 b3

∣∣∣∣∣∣− j

∣∣∣∣∣∣a1 a3

b1 b3

∣∣∣∣∣∣+ k

∣∣∣∣∣∣a1 a2

b1 b2

∣∣∣∣∣∣
A determinant of order 2 is defined by

∣∣∣∣∣∣a b

c d

∣∣∣∣∣∣ = ad− bc.

For example,

∣∣∣∣∣∣−2 1

4 −6

∣∣∣∣∣∣ = (−2)(−6)− (1)(4) = 12− 4 = 8.

A determinant of order 3 can be defined in terms of second-order determinants as follows:

∣∣∣∣∣∣∣∣∣
a1 a2 a3

b1 b2 b3

c1 c2 c3

∣∣∣∣∣∣∣∣∣ = a1

∣∣∣∣∣∣b2 b3

c2 c3

∣∣∣∣∣∣− a2

∣∣∣∣∣∣b1 b3

c1 c3

∣∣∣∣∣∣+ a3

∣∣∣∣∣∣b1 b2

c1 c2

∣∣∣∣∣∣
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EXAMPLE 2.22

Use the determinant formula to show that a⃗× b⃗ is orthogonal to a⃗.

Solution:

We compute the dot product:

(⃗a× b⃗) · a⃗ =

∣∣∣∣∣∣∣∣∣
i j k

a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣∣∣∣ · ⟨a1, a2, a3⟩

Expanding the determinant

= (a2b3 − a3b2)a1 − (a1b3 − a3b1)a2 + (a1b2 − a2b1)a3

Simplifying

= a1a2b3 − a1a3b2 − a1a2b3 + a2a3b1 + a1a3b2 − a2a3b1 = 0

Thus, a⃗× b⃗ is orthogonal to a⃗.
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EXAMPLE 2.23

Use determinant notation to compute a⃗× b⃗, where a⃗ = ⟨8, 2, 3⟩ and b⃗ = ⟨−1, 0, 4⟩.

Solution:

We set up the determinant by placing the standard unit vectors in the first row, the compo-
nents of a⃗ in the second row, and the components of b⃗ in the third row:

a⃗× b⃗ =

∣∣∣∣∣∣∣∣∣
i j k

8 2 3

−1 0 4

∣∣∣∣∣∣∣∣∣
We expand the determinant:

=

∣∣∣∣∣∣2 3

0 4

∣∣∣∣∣∣ i−
∣∣∣∣∣∣ 8 3

−1 4

∣∣∣∣∣∣ j+
∣∣∣∣∣∣ 8 2

−1 0

∣∣∣∣∣∣k
= (2 · 4− 3 · 0)i− (8 · 4− 3 · (−1))j+ (8 · 0− 2 · (−1))k

= (8)i− (32 + 3)j+ (2)k

Thus,

a⃗× b⃗ = 8i− 35j+ 2k.
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Vectors can also be used to find the area of a parallelogram:

Recall that the area A of a parallelogram is given by base × height. In this case, we have

A = ∥a⃗∥(∥⃗b∥ sin θ) = ∥a⃗× b⃗∥.

This shows that the magnitude of the cross product a⃗×b⃗ is equivalent to the area of the parallelogram
determined by a⃗ and b⃗. Furthermore, this means we can determine how ”perpendicular” two vectors
are from the area of a parallelogram. A parallelogram with large area (θ near 90◦) means vectors
are nearly perpendicular and small area (θ near 0◦ or 180◦) means they are nearly parallel.
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EXAMPLE 2.24

Find the area of the parallelogram PQRS with vertices P (1, 1, 0), Q(7, 1, 0), R(9, 4, 2), and
S(3, 4, 2).

Solution:

We first compute two adjacent vectors along the parallelogram:

P⃗Q = ⟨7− 1, 1− 1, 0− 0⟩ = ⟨6, 0, 0⟩

P⃗S = ⟨3− 1, 4− 1, 2− 0⟩ = ⟨2, 3, 2⟩

The area of the parallelogram is given by the magnitude of the cross product:

A = ∥P⃗Q× P⃗S∥

We compute the cross product:

P⃗Q× P⃗S =

∣∣∣∣∣∣∣∣∣
i j k

6 0 0

2 3 2

∣∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣0 0

3 2

∣∣∣∣∣∣ i−
∣∣∣∣∣∣6 0

2 2

∣∣∣∣∣∣ j+
∣∣∣∣∣∣6 0

2 3

∣∣∣∣∣∣

Calculating the minors

= (0 · 2− 0 · 3)i− (6 · 2− 0 · 2)j+ (6 · 3− 0 · 2)k = 0i− 12j+ 18k = ⟨0,−12, 18⟩

The magnitude gives area:

A = ∥P⃗Q× P⃗S∥ =
√
02 + (−12)2 + 182 =

√
468 = 2

√
117 = 6

√
13 units squared
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The dot product of a vector with the cross product of two others vectors is called the triple scalar
product. For vectors a⃗, b⃗, and c⃗, this would be a⃗ · (⃗b× c⃗). As a determinant, the scalar triple product
looks as follows:

a⃗ · (⃗b× c⃗) = ⟨a1, a2, a3⟩ · ⟨b2c3 − b3c2, b3c1 − b1c3, b1c2 − b2c1⟩

= a1(b2c3 − b3c2) + a2(b3c1 − b1c3) + a3(b1c2 − b2c1)

= a1b2c3 − a1b3c2 − a2b1c3 + a2b3c1 + a3b1c2 − a3b2c1

=

∣∣∣∣∣∣∣∣∣
a1 a2 a3

b1 b2 b3

c1 c2 c3

∣∣∣∣∣∣∣∣∣
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EXAMPLE 2.25

Use the scalar triple product to show that the vectors a⃗ = ⟨1, 4,−7⟩, b⃗ = ⟨2,−1, 4⟩, and
c⃗ = ⟨0,−9, 18⟩ are coplanar.

Solution:

We compute the scalar triple product as follows:

a⃗ · (⃗b× c⃗) =

∣∣∣∣∣∣∣∣∣
1 4 −7

2 −1 4

0 −9 18

∣∣∣∣∣∣∣∣∣
Let’s expand the determinant:

= 1

∣∣∣∣∣∣−1 4

−9 18

∣∣∣∣∣∣− 4

∣∣∣∣∣∣2 4

0 18

∣∣∣∣∣∣+ (−7)

∣∣∣∣∣∣2 −1

0 −9

∣∣∣∣∣∣
And compute the minors:

= 1 · ((−1)(18)− (4)(−9))− 4 · ((2)(18)− (4)(0)) + (−7) · ((2)(−9)− (−1)(0)) = 0

The scalar triple product is zero, which means the vectors are coplanar.
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The volume V of the parallelepiped (a three-dimensional prism with six faces that are parallelo-

grams) determined by the vectors a⃗, b⃗, and c⃗ is given by V = |⃗a · (⃗b× c⃗)|. The height h is given by

the scalar projection of a⃗ onto b⃗× c⃗:

h =
∥∥∥proj⃗b×c⃗ a⃗

∥∥∥ =

∣∣∣∣∣ a⃗ · (⃗b× c⃗)

∥⃗b× c⃗∥

∣∣∣∣∣
If you want to check, multiplying this by height by the base ∥⃗b× c⃗∥ would get us the volume of the
parallelepiped.
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EXAMPLE 2.26

Find a vector orthogonal to the plane containing the points P = (5, 2,−1), Q = (−2, 4, 3),
and R = (1,−1, 2).

Solution:

The plane must contain the vectors
−−→
PQ and

−−→
QR:

−−→
PQ = ⟨−2− 5, 4− 2, 3− (−1)⟩ = ⟨−7, 2, 4⟩

−−→
QR = ⟨1− (−2), −1− 4, 2− 3⟩ = ⟨3,−5,−1⟩

The cross product
−−→
PQ×

−−→
QR outputs a vector orthogonal to both

−−→
PQ and

−−→
QR:

−−→
PQ×

−−→
QR =

∣∣∣∣∣∣∣∣∣
i j k

−7 2 4

3 −5 −1

∣∣∣∣∣∣∣∣∣

= i

∣∣∣∣∣∣ 2 4

−5 −1

∣∣∣∣∣∣− j

∣∣∣∣∣∣−7 4

3 −1

∣∣∣∣∣∣+ k

∣∣∣∣∣∣−7 2

3 −5

∣∣∣∣∣∣
= i · (2 · (−1)− 4 · (−5))− j · ((−7) · (−1)− 4 · 3) + k · ((−7) · (−5)− 2 · 3)

= i · (−2 + 20)− j · (7− 12) + k · (35− 6)

= 18i+ 5j+ 29k

Thus, the vector ⟨18, 5, 29⟩ is orthogonal to the plane containing the points P , Q, and R.

Torque τ⃗ is the moment of force that causes rotation around an axis of rotation. Turning a screw-
driver to tighten a screw or moving a door both create a torque. For a position vector r⃗ that starts
on the axis of rotation and has a terminal point where the force is applied and an applied force
vector T⃗ , we have

τ⃗ = r⃗ × F⃗ .
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EXAMPLE 2.27

A bolt is being tightened by a force of ∥F⃗∥ = 50 N using a wrench with ∥r⃗∥ = 0.25 m. The

angle between the wrench and the force vector F⃗ is θ = 75◦ as shown. Find the magnitude
of the torque about the center of the bolt.

Solution:

We substitute in the givens:

∥τ⃗∥ = (0.25 m)(50 N) sin 75◦ = 12.07 Nm
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2.5 Lines and Planes

Let’s say we wanted to find the equation of the following line:

We would simply find the slope m = −3−(−2)
2−0 = − 1

2 . Then with a y-intercept of −2, we would have

y − (−2) = − 1
2 (x− 0) ⇒ y = − 1

2x− 2. Let’s now write it as a vector-valued function. That is, in
the form

r⃗(t) = ⟨x, y⟩.

Let’s now substitute in our values:

⟨x,−1

2
x− 2⟩

= ⟨x,−1

2
x⟩+ ⟨0,−2⟩

= x⟨1,−1

2
⟩+ ⟨0,−2⟩

More commonly, we would actually write this in the form r⃗(t) = ⟨x(t), y(t)⟩. We will let x = 2t and
we now have

t ⟨2,−1⟩︸ ︷︷ ︸
v⃗

+ ⟨0,−2⟩︸ ︷︷ ︸
r⃗0

.
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This is in the form r⃗(t) = tv⃗ + r⃗0. We call this the vector equation of a line. We can rewrite
this further:

r⃗(t) = ⟨x0, y0⟩+ t⟨a, b⟩

= ⟨x0, y0⟩+ t⟨a, b⟩

= ⟨x0 + at, y0 + bt⟩

Combining these gets us the parametric equations of a line in 2D:

x(t) = x0 + at

y(t) = y0 + bt

The scalar equation for an ellipse in R2 centered at (h, k) with x-semiaxis length a and y-semiaxis
length b is given by

(x− h)2

a2
+

(y − k)2

b2
= 1.

To convert this into the vector-valued equation for an ellipse in R2, we would simply rewrite it in
the form r⃗(t) = ⟨x(t), y(t)⟩. We would have r⃗(t) = ⟨h+ a cos t, k + b cos t⟩ with 0 ≤ t ≤ 2π.

We can now extend this to lines in R3. Let’s say we have a point on our line r⃗0 = ⟨x0, y0, z0⟩ and
a direction for the line v⃗ = ⟨a, b, c⟩:

r⃗(t) = r⃗0 + tv⃗

= ⟨x0, y0, z0⟩+ t⟨a, b, c⟩

= ⟨x0 + at, y0 + bt, z0 + ct⟩

= ⟨x(t), y(t), z(t)⟩

From this, we can now get the parametric equations of a line in R3:

x = x0 + at

y = y0 + bt

z = z0 + ct
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For nonzero a, b, and c, we can solve for t to get the symmetric equations of a line:

t =
x− x0

a
=

y − y0
b

=
z − z0

c

EXAMPLE 2.28

Find the parametric and symmetric equations for the line in R3 passing through the points
P0(2, 4,−3) and P1(3,−1, 1).

Solution:

We first find the direction vector v⃗ by subtracting P0 from P1:

v⃗ = ⟨3− 2, −1− 4, 1− (−3)⟩ = ⟨1,−5, 4⟩.

Thus, the vector equation of the line is

r⃗(t) = ⟨2, 4,−3⟩+ t⟨1,−5, 4⟩ = ⟨2 + t, 4− 5t,−3 + 4t⟩.

This gives the following parametric equations:

x(t) = 2 + t, y(t) = 4− 5t, z(t) = −3 + 4t

Now, we solve for t in each equation to get the symmetric forms:

t = x− 2, t =
4− y

5
, t =

z + 3

4

Therefore, the symmetric equation of the line is

t =
x− 2

1
=

4− y

5
=

z + 3

4
.
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We can also graph EXAMPLE 2.28:
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EXAMPLE 2.29

Find parametric and symmetric equations of the line passing through the points
P0 = (1, 4,−2) and P1 = (−3, 5, 0).

Solution:

First, find the direction vector by subtracting the position vectors of the points. In other
words, find a vector parallel to the line:

v⃗ =
−−−→
P0P1 = ⟨−3− 1, 5− 4, 0− (−2)⟩ = ⟨−4, 1, 2⟩

We now write the parametric equations of the line using P0 = (1, 4,−2) as the initial point:

x = 1− 4t, y = 4 + t, z = −2 + 2t

Solving each equation for t, we obtain the symmetric equation of the line:

x− 1

−4
= y − 4 =

z + 2

2
.

Sometimes, we don’t want the equation of an entire line. The solution to this is to use the equation
of only a line segment. To do this, we simply restrict the parameter t.

Let points P = (x0, y0, z0) and Q = (x1, y1, z1) lie on a line. Their position vectors are

p⃗ = ⟨x0, y0, z0⟩, q⃗ = ⟨x1, y1, z1⟩.

The vector equation of the line passing through P and Q is

r⃗(t) = p⃗+ t
−−→
PQ,

= ⟨x0, y0, z0⟩+ t⟨x1 − x0, y1 − y0, z1 − z0⟩

= ⟨x0, y0, z0⟩+ t (⟨x1, y1, z1⟩ − ⟨x0, y0, z0⟩)

= ⟨x0, y0, z0⟩+ t⟨x1, y1, z1⟩ − t⟨x0, y0, z0⟩

= (1− t)⟨x0, y0, z0⟩+ t⟨x1, y1, z1⟩

= (1− t)p⃗+ tq⃗.
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Thus, the vector equation of the line segment from P to Q is:

r⃗(t) = (1− t)p⃗+ tq⃗, 0 ≤ t ≤ 1.

When t = 0, we are at P = r⃗(0) = p⃗. When t = 1, we are at Q = r⃗(1) = q⃗.

If our domain were (−∞,∞), we would have an infinitely long line. With the domain restriction,
the equation smoothly traces the line segment from P to Q as t moves from 0 to 1.

We can also find the parametric equations of a line segment:

r⃗ = p⃗+ t
−−→
PQ

⟨x, y, z⟩ = ⟨x0, y0, z0⟩+ t⟨x1 − x0, y1 − y0, z1 − z0⟩

= ⟨x0 + t(x1 − x0), y0 + t(y1 − y0), z0 + t(z1 − z0)⟩

Then, we have

x = x0 + t(x1 − x0);

y = y0 + t(y1 − y0);

z = z0 + t(z1 − z0), 0 ≤ t ≤ 1.

Previously, we started with the explicit equation for a 2D line y = − 1
2x − 2 and then found the

vector equation for the line r⃗(t) = t⟨2,−1⟩ + ⟨0,−2⟩ = ⟨−2− t, 2t⟩. Here, our slope v⃗ = ⟨2,−1⟩ cor-
responds to a direction vector that defines the direction orthogonal to the vector between P0 and P .
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Let’s define the line as all points P (x, y) such that vector x⃗ =
−−→
P0P from P0 = (x0, y0) to P (x, y) is

orthogonal to n⃗ = ⟨b,−a⟩. That is,

n⃗ · x⃗ = 0

And now we substitute:

n⃗ · ⟨x− x0, y − y0⟩ = 0

Because v⃗ = ⟨a, b⟩, we know that n⃗ = ⟨b,−a⟩. Continuing on,

b(x− x0)− a(y − y0) = 0,

bx− bx0 − ay + ay0 = 0,

bx− ay = bx0 − ay0.

This can be written as Ax+By = −C where A = b, B = −a, and C = bx0 − ay0.

Let’s now extrapolate and find the equations of planes. We know that a line in space is determined
by a point and a direction, but a plane is determined by a point P0(x0, y0, z0) and a normal vector
n⃗ = ⟨a, b, c⟩ that is orthogonal to the plane. More specifically, the plane is the collection of all

points P0(x, y, z) ∈ R3 so that x⃗ =
−−→
P0P is orthogonal to n⃗. That is, n⃗ · x⃗ = 0. Substituting

x⃗ =
−−→
P0P = ⟨x− x0, y − y0, z − z0⟩, we can get the dot product equation for a plane:

n⃗ ·
−−→
P0P = 0

From this, we substitute in to get ⟨a, b, c⟩ · ⟨x− x0, y − y0, z − z0⟩ = 0. Continuing on,

a · (x− x0) + b · (y − y0) + c · (z − z0) = 0

ax+ by + cz = d, where d = ax0 + by0 + cz0

Both of these are known as the scalar equation of the plane. The second equation is linear in x, y,
and z.
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EXAMPLE 2.30

Find the equation of the plane passing through the points P0(2,−1, 3), Q(1, 4, 0), and
R(0,−1, 5).

Solution:

First, we compute two vectors lying on the plane:

−−→
P0Q = ⟨1− 2, 4− (−1), 0− 3⟩ = ⟨−1, 5,−3⟩
−−→
P0R = ⟨0− 2, −1− (−1), 5− 3⟩ = ⟨−2, 0, 2⟩

We take the cross product:

n⃗ =
−−→
P0Q×

−−→
P0R =

∣∣∣∣∣∣∣∣∣
i j k

−1 5 −3

−2 0 2

∣∣∣∣∣∣∣∣∣ = i

∣∣∣∣∣∣5 −3

0 2

∣∣∣∣∣∣− j

∣∣∣∣∣∣−1 −3

−2 2

∣∣∣∣∣∣+ k

∣∣∣∣∣∣−1 5

−2 0

∣∣∣∣∣∣ .

Let’s now compute:

n⃗ = i(5 · 2− (−3) · 0)− j((−1)(2)− (−3)(−2)) + k((−1)(0)− 5 · (−2))

n⃗ = i(10)− j(−2− 6) + k(0 + 10) = ⟨10, 8, 10⟩.

Thus, the normal vector is n⃗ = ⟨10, 8, 10⟩. We can substitute point P0(2,−1, 3) into the
equation of the plane:

10(x− 2) + 8(y − (−1)) + 10(z − 3) = 10x+ 8y + 10z = 42 = 0

5x+ 4y + 5z = 21

https://rhoclouds.github.io


https://rhoclouds.github.io 85

Two planes are parallel if their normal vectors are parallel. For instance, the planes x+2y−3z = 4
and 2x+ 4y − 6z = 3 have normal vectors n⃗1 = ⟨1, 2,−3⟩ and n⃗2 = ⟨2, 4,−6⟩. Since n⃗2 = 2n⃗1, one
is a scalar multiple of the other and they both point in the same direction. Thus, the planes are
parallel. If two planes are not parallel, then they intersect in a straight line:

Image credit: Strang & Herman

The angle between the two planes is the same as the acute angle between their normal vectors:

Image credit: Strang & Herman

We can find this angle θ using the following equation:

cos θ =
|n⃗1 · n⃗2|
∥n⃗1∥∥n⃗2∥
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EXAMPLE 2.31

Find the angle between the planes x+ y+ z = 1 and x− 2y+3z = 1. Then, find symmetric
equations for the line of intersection between them.

Solution:

The angle between two planes is equivalent to the angle between their normal vectors. Let
n⃗1 = ⟨1, 1, 1⟩ and n⃗2 = ⟨1,−2, 3⟩. The angle θ between the planes is given by:

cos θ =
n⃗1 · n⃗2

∥n⃗1∥∥n⃗2∥
=

1(1) + 1(−2) + 1(3)√
12 + 12 + 12 ·

√
12 + (−2)2 + 32

=
1− 2 + 3√
3 ·

√
14

=
2√
42

So the angle is:

θ = cos−1

(
2√
42

)

To find the line of intersection, we need a direction vector d⃗ that lies on both planes. This
is given by the cross product of their normals:

d⃗ = n⃗1 × n⃗2 =

∣∣∣∣∣∣∣∣∣
i j k

1 1 1

1 −2 3

∣∣∣∣∣∣∣∣∣ = i(1 · 3− 1 · (−2))− j(1 · 3− 1 · 1) + k(1 · (−2)− 1 · 1)

= ⟨5,−2,−3⟩

To find a point on the line, set z = 0 and solve the system

x+ y = 1, x− 2y = 1.

We get y = 0 and x = 1. Thus, a point on the line is (1, 0, 0) and the symmetric equations
are

x− 1

5
=

y

−2
=

z

−3
.
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If we need to find the distance between two parallel planes, we simply locate a point on one and
find the distance between it and the other plane. Suppose a plane with normal vector n⃗ passes
through point Q. The distance d between the plane and another point P is given by

d =
∥∥∥projn⃗ −−→QP

∥∥∥ =
∣∣∣compn⃗

−−→
QP
∣∣∣ = |

−−→
QP · n⃗|
∥n⃗∥

The distance from the point (x0, y0, z0) to the plane ax+ by+ cz + k = 0, where n⃗ = ⟨a, b, c⟩ is the
normal vector and Q = (x1, y1, z1) is any point on the plane. Substituting into the formula yields

d =
|a(x0 − x1) + b(y0 − y1) + c(z0 − z1)|√

a2 + b2 + c2
=

|ax0 + by0 + cz0 + k|√
a2 + b2 + c2

.

EXAMPLE 2.32

Find the distance between the parallel planes 5x− 2y + z = 6 and 5x− 2y + z = −3.

Solution:

Since the planes are parallel, we know their normal vector is shared: n⃗ = ⟨5,−2, 1⟩. We pick
a point on one of the planes. I will go with a point on the second plane. Then we set x = 0,
y = 0, and solve for z:

5(0)− 2(0) + z = −3 ⇒ z = −3

So we can now use point P (0, 0,−3) and compute the distance to the other plane:

d =
|5(0)− 2(0) + (−3)− 6|√

52 + (−2)2 + 12
=

| − 9|√
25 + 4 + 1

=
9√
30

=
3
√
30

10
units

2.6 Quadric Surfaces

Planes and spheres are specific cases of three-dimensional figures called surfaces. We will continue
our exploration of surfaces with cylinders. We can define a cylinder as a surface that contains all
lines parallel to a given line that pass through a given plane curve. These parallel lines are called
rulings.

This means that any curve can form a cylinder. Cylindrical surfaces do not have to be circular.
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The equation x2 + y2 = 16 describes a circle in R2 centered at the origin with radius 4. In R3, this
would represent a surface. If we stack many of them on top of each other, we’d have a cylinder. In
other words, we can extend a curve along an axis (or a straight line) to form a cylinder:

In similar fashion, parabolic cylinders are created by extending many parabolas along a straight
line. Here is the graph of z = x2:
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Quadric surfaces are described using quadratic equations and are generalized in the form

Ax2 +By2 + Cz2 +Dxy + Exz + Fyz +Gx+Hy + Jz +K = 0,

where A,B,C, ..., J,K are nonlinear real number coefficients. Through translation and rotation, we
can come up with two standard forms:

Ax2 +By2 + Cz2 + J = 0 and x2 +By2 + Iz = 0

When surfaces intersect a plane parallel to one of the coordinate planes, the cross sections created
are known as traces. When a quadric surface intersects a coordinate plane, its trace is a conic
section.

We begin our study of quadric surfaces with ellipsoids. All of the traces of an ellipsoid are ellipses.
Ellipsoids are given by

(x− h)2

a2
+

(y − k)2

b2
+

(z −m)2

c2
= 1.

If we assume that the center (h, k,m) is (0, 0, 0), we get

x2

a2
+

y2

b2
+

z

c2
= 1.
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EXAMPLE 2.33

Graph the ellipsoid x2

22 + y2

32 + z2

52 = 1 by first finding the traces. Assume k = 0.

Solution:

We can find the traces by setting z = 0 for the trace in the xy-plane, y = 0 for the trace
in the xz-plane, and x = 0 for the trace in the yz-plane. The results are shown below,
respectively:

https://rhoclouds.github.io


https://rhoclouds.github.io 91

EXAMPLE 2.33 (CONTINUED)

Let’s now sketch these traces in 3D:
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If a quadric surface has elliptical traces in the xy-plane, but parabolic traces in the xz-plane and
yz-plane, it is called an elliptic paraboloid. The equation is of the form

x2

a2
+

y2

b2
=

x

c

EXAMPLE 2.34

Determine what surface z = y2 − x2 is by first finding its traces.

Solution:

Generally, the traces in the xy-plane are found by setting z = k which gives us k = y2 − x2.
This is a family of hyperbolas. The traces in the xz-plane are found by setting y = k which
gives us z = k2 − x2. These are parabolas that open downward. The traces in the yz-plane
are found by setting x = k which gives us z = y2−k2. These are parabolas that open upward.

We can now set k = 0 in each case to get y2 = x2 in the xy-plane, z = −x2 in the xz-plane,
and z = y2 in the yz-plane. Here is the graph:

This saddle-like shape means it is a hyperbolic paraboloid.
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Seventeen quadric surfaces can be derived from the general equation, but you only need to know
the most common six. Let’s go through a summary of each.

Ellipsoid:

x2

a2
+

y2

b2
+

z2

c2
= 1

All traces are ellipses.
If a = b = c, the ellipsoid is a sphere.
Real-world example: Certain planets

Exoplanet WASP-12 b. Image credit: NASA
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Elliptic Paraboloid:

z

c
=

x2

a2
+

y2

b2

Horizontal traces are ellipses. Vertical traces are parabolas.
The variable raised to the first power indicates the axis of the paraboloid.
Real-world example: Satellite dishes

Deep Space Station 53 Antenna in Madrid. Image credit: NASA
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Hyperbolic Paraboloid:

z

c
=

x2

a2
− y2

b2

Horizontal traces are hyperbolas. Vertical traces are parabolas.
The axis of the surface corresponds to the linear variable.
Real-world example: Certain roofs in modern architecture

Olympic Stadium in Munich. Image credit: Olympiapark München
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Cone (elliptic cone):

x2

a2
+

y2

b2
− z2

c2
= 0

Horizontal traces are ellipses. Vertical traces in the planes x = k and y = k are hyperbolas if
k ̸= 0 but are pairs of lines if k = 0. The traces in the coordinate planes parallel to the axis
are intersecting lines.
The axis of the surface corresponds to the variable with a negative coefficient.
Real world-example: Volcanoes

Mount Shishaldin in Alaska. Image credit: National Geographic
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Hyperboloid of One Sheet:

x2

a2
+

y2

b2
− z2

c2
= 1

Horizontal traces are ellipses. Vertical traces are hyperbolas.
The axis of symmetry corresponds to the variable whose coefficient is negative.
Real-world example: Nuclear cooling towers

Nine Mile Point in New York. Image credit: Constellation Energy
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Hyperboloid of Two Sheets:

z2

c2
− x2

a2
− y2

b2
= 1

Horizontal traces in z = k are ellipses if k > c or k < −c. Vertical traces are hyperbolas.
The axis of the surface corresponds to the variable with a positive coefficient.
The two negative terms indicate two sheets.
Real-world example: Can sometimes appear in the geometry of spacetime

Minkowski space diagram showing timelike separation inside a light cone. Image credit: Er-
rerde, UIUC.
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EXAMPLE 2.35

Identify the surface represented by the equation 9x2 + y2 − z2 + 2z − 10 = 0.

Solution:

We begin by completing the square on the z-terms and rewriting the expression in standard
form:

9x2 + y2 − z2 + 2z = 10

9x2 + y2 −
(
z2 − 2z

)
= 10

9x2 + y2 −
[
(z − 1)2 − 1

]
= 10

9x2 + y2 − (z − 1)2 + 1 = 10

9x2 + y2 − (z − 1)2 = 9

9x2

9
+

y2

9
− (z − 1)2

9
= 1

x2 +
y2

9
− (z − 1)2

9
= 1

This is the equation of a hyperboloid of one sheet centered at (0, 0, 1) with an axis of sym-
metry along the z-axis.
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3 Vector-Valued Functions

Now that we have a foundation in the properties of vectors and their geometric interpretations, we
will extend our focus to studying curves in planes and three-dimensional space.

3.1 Limits of Vector-Valued Functions

A vector-valued function, or vector function, is simply a function r⃗(t) whose domain is a set
of real numbers and whose range is a set of vectors. We will focus on vector functions whose values
are in R3.

Let f(t), g(t), and h(t) be the real-valued component functions of r⃗(t). Then, the general form
of a vector-valued function is

r⃗(t) = ⟨f(t), g(t), h(t)⟩ = f(t)i+ g(t)j+ h(t)k.

EXAMPLE 3.1

For the vector-valued function r⃗(t) = (t2 − 3t) i+ (4t+ 1) j, evaluate r⃗(0), r⃗(1), and r⃗(−4).
Determine if the function has any domain restrictions.

Solution:

We substitute each value of t into the expression for r⃗(t):

r⃗(0) = (02 − 3 · 0) i+ (4 · 0 + 1) j = 0 i+ 1 j = j

r⃗(1) = (12 − 3 · 1) i+ (4 · 1 + 1) j = (−2) i+ 5 j

r⃗(−4) = ((−4)2 − 3 · (−4)) i+ (4 · (−4) + 1) j = (16 + 12) i+ (−16 + 1) j = 28 i− 15 j

There are no domain restrictions because both components of r⃗(t) are polynomial functions,
which are defined for all real numbers.

A vector is considered to be in standard condition if the initial point is located at the origin.
We generally graph vectors in the domain of the function in standard position to guarantee the
uniqueness of the graph. The graph of the vector function

r⃗(t) = f(t)i+ g(t)j
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consists of the set of all points (f(t), g(t)) and is called a plane curve. The graph of the vector
function

r⃗(t) = f(t)i+ g(t)j+ h(t)k

consists of the set of all points (f(t), g(t), h(t)) and is called a space curve. We refer to the vector
function representation of plane curves and space curves as vector parameterization of a curve.

A curve being traced out by the moving position vector r⃗(t). Image credit: Stewart

The projection of the curve onto the xy-plane is given by r⃗(t) = ⟨cos t, sin t, 0⟩. The curve spirals
upward around a cylinder. Image credit: Stewart
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EXAMPLE 3.2

Graph the plane curve represented by r⃗(t) = 4 cos(t3) i+ 3 sin(t3) j, 0 ≤ t ≤
√
2π.

Solution:

First, complete your table of values:

t r⃗(t) t r⃗(t)

0 4 i 3
√
π −4 i

3
√

π
4 2

√
2 i+ 3

√
2

2 j 3

√
5π
4 −2

√
2 i− 3

√
2

2 j

3
√

π
2 3 j 3

√
3π
2 −3 j

3

√
3π
4 −2

√
2 i+ 3

√
2

2 j 3

√
7π
4 2

√
2 i− 3

√
2

2 j

3
√
2π 4 i

We can now graph:

Image credit: Strang & Herman
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EXAMPLE 3.3

Graph the space curve represented by r⃗(t) = 4 cos(t) i+ 4 sin(t) j+ tk, 0 ≤ t ≤ 4π.

Solution:

First, complete your table of values:

t r⃗(t) t r⃗(t)

0 4 i π −4 i+ π k

π
4 2

√
2 i+ 2

√
2 j+ π

4 k 5π
4 −2

√
2 i− 2

√
2 j+ 5π

4 k

π
2 4 j+ π

2 k 3π
2 −4 j+ 3π

2 k

3π
4 −2

√
2 i+ 2

√
2 j+ 3π

4 k 7π
4 2

√
2 i− 2

√
2 j+ 7π

4 k

2π 4 i+ 2π k

We can now graph:

Image credit: Strang & Herman
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Given a vector-valued function r⃗(t) = f(t)i, g(t)j, we can define x = f(t), y = g(t), and z = h(t),
which are parametric equations. In other words, a vector-valued function is very similar to a para-
metric equation. For a vector-valued function, you are often only interested in specific domains
of the parameter. If you restrict the domain, you can essentially make a parametric curve and a
vector-valued function trace out the same path. Points on the vector-valued graph simply represent
the head of the vector that originates from the origin whereas parametric curves treat each point
as a location. Thus, since we can parameterize a curve defined by a given function, we can also
represent any plane curve as a vector-valued function.

The limit L⃗ of a vector-valued function r⃗ as it approaches a is written as

lim
t→a

r⃗(t) = L⃗,

provided

lim
t→a

∥∥∥r⃗(t)− L⃗
∥∥∥ = 0.

More practically, for r⃗(t) = ⟨f(t), g(t), h(t)⟩, the limit is given by

lim
t→a

r⃗(t) = ⟨lim
t→a

f(t), lim
t→a

g(t), lim
t→a

h(t)⟩,

provided that the limits of the component functions exist.

Similarly, the componentwise definition can be written as follows. The limit of the vector-
valued function r⃗(t) = f(t) i+ g(t) j+ h(t)k as t approaches a is given by

lim
t→a

r⃗(t) =
[
lim
t→a

f(t)
]
i+
[
lim
t→a

g(t)
]
j+
[
lim
t→a

h(t)
]
k,

provided that all three limits exist.
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EXAMPLE 3.4

Find lim
t→0

r⃗(t), where r⃗(t) = (1 + t3) i+ te−t j+ sin t
t k.

Solution:

We evaluate each coordinate limit separately:

lim
t→0

r⃗(t) =
[
lim
t→0

(1 + t3)
]
i+
[
lim
t→0

(
te−t

)]
j+

[
lim
t→0

(
sin t

t

)]
k

= 1 i+ 0 j+ 1k = i+ k

EXAMPLE 3.5

Calculate lim
t→2

r⃗(t), where r⃗(t) =
√
t2 + 3t− 1 i− (4t− 3) j− sin

(
(t+1)π

2

)
k.

Solution:

We evaluate each coordinate limit separately:

lim
t→2

r⃗(t) =
[
lim
t→2

√
t2 + 3t− 1

]
i+
[
lim
t→2

(−4t+ 3)
]
j+

[
lim
t→2

(
− sin

(
(t+ 1)π

2

))]
k

=
√
4 + 6− 1 i+ (−8 + 3) j+

(
− sin

(
3π

2

))
k = 3 i− 5 j+ 1k
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Let f , g, and h be functions of t. Then, the vector-valued function

r⃗(t) = f(t) i+ g(t) j

is continuous at the point t = a if the following three conditions hold:

1. r⃗(a) exists,

2. lim
t→a

r⃗(t) exists,

3. lim
t→a

r⃗(t) = r⃗(a).

Similarly, the vector-valued function

r⃗(t) = f(t) i+ g(t) j+ h(t)k

is continuous at the point t = a if the following three conditions hold:

1. r⃗(a) exists,

2. lim
t→a

r⃗(t) exists,

3. lim
t→a

r⃗(t) = r⃗(a).

3.2 Derivatives and Integrals of Vector-Valued Functions

Let’s say we have the vector-valued function r⃗(t). The average rate of change between t1 and t2 is
given by

r⃗(t2)− r⃗(t1)

t2 − t1
.
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This is known as the secant vector :

Image credit: UMich

The average rate of change will approach the derivative as t2 gets closer to t1 and thus becomes a
better estimate at that point. The derivative is a vector that is always tangent to the curve at t1.
It gives us the instantaneous rate of change.

The derivative of a vector-valued function r⃗(t) is defined as:

dr⃗

dt
= r⃗ ′(t) = lim

h→0

r⃗(t+ h)− r⃗(t)

h
,

provided the limit exists.

If r⃗ ′(t) exists for all t in an open interval (a, b), then r⃗(t) is differentiable over (a, b). If r⃗ ′(t)
exists for all t in an open interval (a, b), then r⃗(t) is differentiable over (a, b).

For r⃗(t) to be differentiable on the closed interval [a, b], the following one-sided limits must
also exist:

r⃗ ′(a) = lim
h→0+

r⃗(a+ h)− r⃗(a)

h
and r⃗ ′(b) = lim

h→0−

r⃗(b+ h)− r⃗(b)

h
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EXAMPLE 3.6

Use the definition to calculate the derivative of the vector-valued function r⃗(t) = (3t+4) i+
(t2 − 4t+ 3) j.

Solution:

lim
h→0

[3(t+ h) + 4] i+
[
(t+ h)2 − 4(t+ h) + 3

]
j−
[
(3t+ 4) i+ (t2 − 4t+ 3) j

]
h

= lim
h→0

(3t+ 3h+ 4) i− (3t+ 4) i+
(
t2 + 2th+ h2 − 4t− 4h+ 3

)
j− (t2 − 4t+ 3) j

h

= lim
h→0

(3h) i+
(
2th+ h2 − 4h

)
j

h

= lim
h→0

(3 i+ (2t+ h− 4) j)

= 3 i+ (2t− 4) j
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EXAMPLE 3.7

Find an equation for the line tangent to the curve r⃗(t) = ⟨t2, 3− t2, t3⟩ at t = 1.

Solution:

The tangent line will pass through r⃗(1) and point in the direction of r⃗ ′(1).
First, compute the derivative componentwise:

r⃗ ′(t) =
〈
2t, −2t, 3t2

〉

We evaluate at t = 1 to get r⃗(1) = ⟨1, 2, 1⟩ and r⃗ ′(1) = ⟨2, −2, 3⟩.
Thus, the parametric equations for the tangent line are

L⃗(t) = r⃗(1) + t r⃗ ′(1) = ⟨1, 2, 1⟩+ t ⟨2, −2, 3⟩ = ⟨1 + 2t, 2− 2t, 1 + 3t⟩.

The tangent line (shown in blue) is a continuation of the derivative vector in both directions:

Image credit: UMich
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Geometrically, r⃗ ′(t) is the tangent vector to the curve at time t. If r⃗(t) traces the path of a particle,
then r⃗ ′(t) points in the direction of motion at that instant.

We also define the unit tangent vector as:

T(t) =
r⃗ ′(t)

∥r⃗ ′(t)∥
.

The unit tangent vector tells you the direction in which a curve is heading at a specific point. It is
essentially the normalized version of the derivative vector.

And now for an essential theorem on the differentiation of vector-valued functions:

Let f(t), g(t), h(t) be differentiable functions of t.

1. If r⃗(t) = f(t) i+ g(t) j, then

r⃗ ′(t) = f ′(t) i+ g′(t) j.

2. If r⃗(t) = f(t) i+ g(t) j+ h(t)k, then

r⃗ ′(t) = f ′(t) i+ g′(t) j+ h′(t)k.
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EXAMPLE 3.9

Calculate the derivative of the vector-valued function r⃗(t) = (t ln t) i+(5et) j+(cos t−sin t)k.

Solution:

Differentiate each component:

d

dt
(t ln t) = ln t+ 1

d

dt
(5et) = 5et

d

dt
(cos t− sin t) = − sin t− cos t

After gathering we have our answer:

r⃗ ′(t) = (ln t+ 1) i+ 5et j+ (− sin t− cos t)k

EXAMPLE 3.10

(a) Find the derivative of r⃗(t) = (1 + t3) i+ te−t j+ sin(2t)k.
(b) Find the unit tangent vector at the point where t = 0.

Solution:

(a) Differentiate each component to get r⃗ ′(t) = 3t2 i+ (1− t)e−t j+ 2 cos(2t)k.

(b) Then, evaluate at t = 0 to get r⃗(0) = i and r⃗ ′(0) = 0 i+1 j+2k. Now we can plug these
in to find the unit tangent vector at (1, 0, 0):

T(0) =
r⃗ ′(0)

∥r⃗ ′(0)∥
=

j+ 2k√
1 + 4

=
1√
5
j+

2√
5
k
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EXAMPLE 3.11

Find parametric equations for the tangent line to the helix r⃗(t) = ⟨2 cos t, sin t, t⟩ at the
point (0, 1, π

2 ). Then graph the helix and tangent line.

Solution:

Differentiate to get r⃗ ′(t) = ⟨−2 sin t, cos t, 1⟩. Then, evaluate at t = π
2 :

r⃗ ′
(π
2

)
= ⟨−2, 0, 1⟩

Thus, the tangent line at the point (0, 1, π
2 ) has direction vector ⟨−2, 0, 1⟩, and the parametric

equations are

x = −2t, y = 1, z =
π

2
+ t.

Let’s now graph:
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EXAMPLE 3.11 (CONTINUED)

Please run the MATLAB code yourself and have a look!

% Helix parameters

t = linspace(0, 4*pi, 1000);

x = 2 * cos(t);

y = sin(t);

z = t;

t0 = pi/2; % Tangent point

p0 = [2*cos(t0), sin(t0), t0];

v = [-2, 0, 1];

% Tangent line parameter

s = linspace(-1, 1, 200);

x_tan = p0(1) + v(1)*s;

y_tan = p0(2) + v(2)*s;

z_tan = p0(3) + v(3)*s;

figure;

hold on;

% Helix

plot3(x, y, z, 'b', 'LineWidth ', 2);

% Tangent line

plot3(x_tan , y_tan , z_tan , 'r--', 'LineWidth ', 2);

% Point of tangency

plot3(p0(1), p0(2), p0(3), 'ko', 'MarkerSize ', 8, 'MarkerFaceColor ', 'k');

xlabel('$x$', 'Interpreter ', 'latex ');
ylabel('$y$', 'Interpreter ', 'latex ');
zlabel('$z$', 'Interpreter ', 'latex ');
title('Helix and Tangent Line at t = \pi/2');
legend('Helix ', 'Tangent Line', 'Point of Tangency ');
grid on;

axis equal;

view (135, 25);

ex3point11plot.m


% Helix parameters
t = linspace(0, 4*pi, 1000);
x = 2 * cos(t);
y = sin(t);
z = t;

t0 = pi/2; % Tangent point
p0 = [2*cos(t0), sin(t0), t0];
v = [-2, 0, 1];

% Tangent line parameter
s = linspace(-1, 1, 200);
x_tan = p0(1) + v(1)*s;
y_tan = p0(2) + v(2)*s;
z_tan = p0(3) + v(3)*s;

figure;
hold on;

% Helix
plot3(x, y, z, 'b', 'LineWidth', 2);
% Tangent line
plot3(x_tan, y_tan, z_tan, 'r--', 'LineWidth', 2);
% Point of tangency
plot3(p0(1), p0(2), p0(3), 'ko', 'MarkerSize', 8, 'MarkerFaceColor', 'k');

xlabel('$x$', 'Interpreter', 'latex');
ylabel('$y$', 'Interpreter', 'latex');
zlabel('$z$', 'Interpreter', 'latex');
title('Helix and Tangent Line at t = \pi/2');
legend('Helix', 'Tangent Line', 'Point of Tangency');
grid on;
axis equal;
view(135, 25);
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Properties of Differentiation for Vector-Valued Functions

Let u⃗(t) and v⃗(t) be differentiable vector-valued functions of t, let f(t) be a differentiable
scalar-valued function of t that takes only real numbers, and let c be a constant. Then the
following derivative rules hold:

1.
d

dt
[cu⃗(t)] = cu⃗ ′(t) (scalar multiple)

2.
d

dt
[u⃗(t)± v⃗(t)] = u⃗ ′(t)± v⃗ ′(t) (sum and difference)

3.
d

dt
[f(t)u⃗(t)] = f ′(t)u⃗(t) + f(t)u⃗ ′(t) (scalar product)

4.
d

dt
[u⃗(t) · v⃗(t)] = u⃗ ′(t) · v⃗(t) + u⃗(t) · v⃗ ′(t) (dot product)

5.
d

dt
[u⃗(t)× v⃗(t)] = u⃗ ′(t)× v⃗(t) + u⃗(t)× v⃗ ′(t) (cross product)

6.
d

dt
[u⃗(f(t))] = u⃗ ′(f(t)) · f ′(t) (chain rule)

7. If u⃗(t) · u⃗(t) = c, then u⃗(t) · u⃗ ′(t) = 0. (orthogonality condition)
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EXAMPLE 3.12

Given the vector-valued functions r⃗(t) = (6t + 8) i + (4t2 + 2t − 3) j + 5tk and u⃗(t) =
(t2 − 3) i+ (2t+ 4) j+ (t3 − 3t)k, calculate each of the following derivatives:

(a)
d

dt
[r⃗(t) · u⃗(t)]

(b)
d

dt
[u⃗(t)× u⃗(t)]

Solution:

(a) We compute the derivatives componentwise:

r⃗ ′(t) = 6 i+ (8t+ 2) j+ 5k, u⃗ ′(t) = 2t i+ 2 j+ (3t2 − 3)k

By the dot product rule, d
dt [r⃗(t) · u⃗(t)] = r⃗ ′(t) · u⃗(t) + r⃗(t) · u⃗ ′(t). Thus we have

(6 i+ (8t+ 2) j+ 5k) ·
(
(t2 − 3) i+ (2t+ 4) j+ (t3 − 3t)k

)
+
(
(6t+ 8) i+ (4t2 + 2t− 3) j+ 5tk

)
·
(
2t i+ 2 j+ (3t2 − 3)k

)
= 6(t2 − 3) + (8t+ 2)(2t+ 4) + 5(t3 − 3t) + 2t(6t+ 8) + 2(4t2 + 2t− 3) + 5t(3t2 − 3)

= 6t2 − 18 + 16t2 + 32t+ 4t+ 8 + 5t3 − 15t+ 12t2 + 16t+ 8t2 + 4t− 6 + 15t3 − 15t

= 20t3 + 42t2 + 26t− 16.
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EXAMPLE 3.12 (CONTINUED)

(b) We use the product rule for cross products which says d
dt [u⃗(t)× u⃗(t)] = u⃗ ′(t) × u⃗(t) +

u⃗(t)× u⃗ ′(t).

Since the cross product of a vector with itself is zero (u⃗(t) × u⃗(t) = 0⃗), we know that
u⃗ ′(t)× u⃗(t) + u⃗(t)× u⃗ ′(t) = 0⃗.

We are trying to find d
dt [u⃗(t)× u⃗(t)] = u⃗(t)×u⃗ ′′(t). For u⃗(t) = (t2−3) i+(2t+4) j+(t3−3t)k,

we compute

u⃗ ′′(t) =
d

dt

[
2t i+ 2 j+ (3t2 − 3)k

]
= 2 i+ 6tk.

Now we compute the cross product:

d

dt
[u⃗(t)× u⃗(t)] = u⃗(t)× u⃗ ′′(t) =

∣∣∣∣∣∣∣∣∣
i j k

t2 − 3 2t+ 4 t3 − 3t

2 0 6t

∣∣∣∣∣∣∣∣∣
= i [(2t+ 4)(6t)− 0]− j

[
(t2 − 3)(6t)− 2(t3 − 3t)

]
+ k

[
(t2 − 3)(0)− 2(2t+ 4)

]
= i · 6t(2t+ 4)− j

[
6t(t2 − 3)− 2(t3 − 3t)

]
− k · 4(2t+ 4)

= (12t2 + 24t) i+ (12t2 − 4t3) j− (4t+ 8)k
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We express the integral of a continuous vector-valued function r⃗(t) in terms of the integrals of its
component functions:

Integrals of Vector-Valued Functions

Let f(t), g(t), and h(t) be integrable real-valued functions over the interval [a, b].

1. The indefinite integral of a vector-valued function r⃗(t) = f(t) i+ g(t) j is given by

∫
r⃗(t) dt =

(∫
f(t) dt

)
i+

(∫
g(t) dt

)
j.

The definite integral is:

∫ b

a

r⃗(t) dt =

(∫ b

a

f(t) dt

)
i+

(∫ b

a

g(t) dt

)
j.

2. The indefinite integral of a vector-valued function r⃗(t) = f(t) i + g(t) j + h(t)k is given
by

∫
r⃗(t) dt =

(∫
f(t) dt

)
i+

(∫
g(t) dt

)
j+

(∫
h(t) dt

)
k.

The definite integral is∫ b

a

r⃗(t) dt =

(∫ b

a

f(t) dt

)
i+

(∫ b

a

g(t) dt

)
j+

(∫ b

a

h(t) dt

)
k.
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Just like with real-valued functions, each of the component integrals contains an integration con-
stant.

Say we have the following component integrals in two dimensions:

∫
f(t) dt = F (t) + C1 and

∫
g(t) dt = G(t) + C2,

where F and G are antiderivatives of f and g, respectively.

Then, for the vector-valued function

r⃗(t) = f(t) i+ g(t) j,

its indefinite integral is computed component-by-component:

∫
(f(t) i+ g(t) j) dt =

(∫
f(t) dt

)
i+

(∫
g(t) dt

)
j

= (F (t) + C1) i+ (G(t) + C2) j = F (t) i+G(t) j+ C1 i+ C2 j

= F (t) i+G(t) j+ C⃗,

where C⃗ = C1 i+ C2 j is a constant vector.

The integration constants became a constant vector.

The fundamental theorem of calculus can be extended to continuous vector functions:

Let r⃗(t) = f(t) i + g(t) j + h(t)k be a continuous vector-valued function on the interval [a, b], and

suppose that R⃗(t) is an antiderivative of r⃗(t); that is, R⃗ ′(t) = r⃗(t). Then:

∫ b

a

r⃗(t) dt = R⃗(t)
∣∣∣b
a
= R⃗(b)− R⃗(a)

In component form, this becomes

∫ b

a

f(t) dt i+

∫ b

a

g(t) dt j+

∫ b

a

h(t) dtk = [F (b)− F (a)] i+ [G(b)−G(a)] j+ [H(b)−H(a)]k,

where F , G, and H are antiderivatives of f , g, and h, respectively.
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EXAMPLE 3.13

Evaluate the following definite integrals:

(a)
∫ (

(3t2 + 2t) i+ (3t− 6) j+ (6t3 + 5t2 − 4)k
)
dt

(b)
∫ 〈

t, t2, t3
〉
×
〈
t3, t2, t

〉
dt

Solution:

(a) Break the integral into componentwise integrals:

=

[∫
(3t2 + 2t) dt

]
i+

[∫
(3t− 6) dt

]
j+

[∫
(6t3 + 5t2 − 4) dt

]
k

= (t3 + t2) i+

(
3

2
t2 − 6t

)
j+

(
3

2
t4 +

5

3
t3 − 4t

)
k+ C⃗

(b) First, compute the cross product
〈
t, t2, t3

〉
×
〈
t3, t2, t

〉
:

∣∣∣∣∣∣∣∣∣
i j k

t t2 t3

t3 t2 t

∣∣∣∣∣∣∣∣∣ =
(
t2(t)− t3(t2)

)
i−
(
t(t)− t3(t3)

)
j+
(
t(t2)− t2(t3)

)
k

= (t3 − t5) i− (t2 − t6) j+ (t3 − t5)k

Now we can integrate:

∫
(t3 − t5) i− (t2 − t6) j+ (t3 − t5)k dt

=

(
t4

4
− t6

6

)
i−
(
t3

3
− t7

7

)
j+

(
t4

4
− t6

6

)
k+ C⃗
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EXAMPLE 3.13

Do the following for the vector-valued function r⃗(t) = 2 cos t i+ sin t j+ 2t k:

(a) Find the indefinite integral

∫
r⃗(t) dt

(b) Evaluate the definite integral

∫ π/2

0

r⃗(t) dt

Solution:

(a)

∫
r⃗(t) dt =

(∫
2 cos t dt

)
i+

(∫
sin t dt

)
j+

(∫
2t dt

)
k

= 2 sin t i− cos t j+ t2 k+ C⃗

(b)

∫ π/2

0

r⃗(t) dt =
[
2 sin t i− cos t j+ t2 k

]π/2
0

= 2 i+ j+
π2

4
k

3.3 Arc Length and Curvature

Recall that the formula for the arc length s of a curve defined by the parametric functions x = x(t)
and y = y(t) for t1 ≤ t ≤ t2 is

s =

∫ t2

t1

√
(x′(t))2 + (y′(t))2 dt.

Arc length for a smooth curve defined by the vector-valued function r⃗(t) = f(t)i+g(t)j for a ≤ t ≤ b
is given by

s =

∫ b

a

√
(f ′(t))2 + (g′(t))2 dt.

Similarly, arc length for the vector-valued function r⃗(t) = f(t)i+ g(t)j+ h(t)k in three dimensions
for the same interval is given by
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s =

∫ b

a

√
(f ′(t))2 + (g′(t))2 + (h′(t))2 dt.

Suppose a smooth curve has the vector equation r⃗(t) = f(t)i + g(t)j where a ≤ t ≤ b.
Equivalently, you could say it has the parametric equations x = f(t) and y = g(t) where f ′,
g′, and h′ are continuous. Then, the arc length of the plane curve is given by

s =

∫ b

a

∥r⃗ ′(t)∥ dt =

∫ b

a

√
[f ′(t)]2 + [g′(t)]2 dt.

Suppose a smooth curve has the vector equation r⃗(t) = f(t)i+ g(t)j+ h(t)k where a ≤ t ≤ b.
Equivalently, you could say it has the parametric equations x = f(t), y = g(t), and z = h(t)
where f ′, g′, and h′ are continuous. Then, the arc length of the space curve is given by

s =

∫ b

a

∥r⃗ ′(t)∥ dt =

∫ b

a

√
[f ′(t)]2 + [g′(t)]2 + [h′(t)]2 dt.

Recall how we can approximate area under a real-valued curve using Riemann sums. This plot
shows how the length of a space curve (blue) is the limit of lengths of inscribed polygons (pink).

In other words, we can approximate the curve using line segments.
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EXAMPLE 3.14

Find the length of the arc of the circular helix defined by the vector-valued function
r⃗(t) = cos t i + sin t j + tk from the point (1, 0, 0) to the point (1, 0, 2π). Then, graph the
result.

Solution:

We begin by computing the derivative of r⃗(t):

r⃗ ′(t) = − sin t i+ cos t j+ k

Now compute the magnitude:

∥r⃗ ′(t)∥ =
√

(− sin t)2 + (cos t)2 + 1 =
√

sin2 t+ cos2 t+ 1 =
√
1 + 1 =

√
2

The arc begins at t = 0 and ends at t = 2π, so the arc length is given by

s =

∫ 2π

0

∥r⃗ ′(t)∥ dt =

∫ 2π

0

√
2 dt =

√
2

(∫ 2π

0

dt

)
=

√
2(2π) = 2

√
2π

Let’s graph:
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A vector-valued function that describes a helix can be written in the form

r⃗(t) = R cos

(
2πNt

h

)
i+R sin

(
2πNt

h

)
j+ tk, 0 ≤ t ≤ h,

where R represents the radius of the helix, h represents the height (distance between two consecutive
turns), and the helix completes N turns. Let’s now derive a formula for the arc length of this helix.
First we have

r⃗ ′(t) = −2πNR

h
sin

(
2πNt

h

)
i+

2πNR

h
cos

(
2πNt

h

)
j+ k.

Then,

s =

∫ b

a

∥r⃗ ′(t)∥ dt

=

∫ h

0

√(
−2πNR

h
sin

(
2πNt

h

))2

+

(
2πNR

h
cos

(
2πNt

h

))2

+ 12 dt

=

∫ h

0

√
4π2N2R2

h2

(
sin2

(
2πNt

h

)
+ cos2

(
2πNt

h

))
+ 1 dt

=

∫ h

0

√
4π2N2R2

h2
+ 1 dt

=

[
t

√
4π2N2R2

h2
+ 1

]h
0

= h

√
4π2N2R2

h2
+ 1

=
√
4π2N2R2 + h2

This gives the formula for the length of a wire needed to form a helix with N turn, radius R, and
height h.
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The arc length of a curve often arises naturally from the shape of the curve rather than a specific
coordinate system. This is why parameterization of a curve with respect to arc length is useful. It
lets us efficiently describe the motion and shape of a curve as a geometric object.

To do this, we need the arc length function:

Let r⃗(t) describe a smooth curve for t ≥ a. Then the arc length function is given by

s(t) =

∫ t

a

∥r⃗ ′(u)∥ du =

∫ t

a

√(
dx

du

)2

+

(
dy

du

)2

+

(
dz

du

)2

du.

Additionally,

ds

dt
= ∥r⃗ ′(t)∥ > 0.

If ∥r⃗ ′(t)∥ = 1 for all t ≥ a, then the parameter t represents the arc length measured from
t = a.

If a curve r⃗(t) is already given in terms of a parameter t, and you have the arc length function s(t),
then you can try to solve for t in terms of s. That is, find t = t(s). Once you do that, you can
reparametrize the curve in terms of s by substituting it in for t:

r⃗(s) = r⃗(t(s))

This now means you’re describing the curve in terms of how far you’ve traveled along it from its
starting point. For example, if s = 3, then r⃗(t(3)) is the position vector of the point that’s 3 units
of length along the curve from where you started.
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EXAMPLE 3.15

Reparameterize the helix r⃗(t) = cos t i + sin t j + tk with respect to arc length measured
from the point (1, 0, 0) in the direction of increasing t.

Solution:
The initial point (1, 0, 0) corresponds to t = 0. The derivative is r⃗ ′(t) = − sin t i+cos t j+k.
Then, we compute the magnitude:

∥r⃗ ′(t)∥ =
√

(− sin t)2 + (cos t)2 + (1)2 =
√

sin2 t+ cos2 t+ 1 =
√
1 + 1 =

√
2 =

ds

dt

The arc length function is

s = s(t) =

∫ t

0

∥r⃗ ′(u)∥ du =

∫ t

0

√
2 du =

√
2t.

Solving for t, we get t = s√
2
. Substituting this into r⃗(t), the reparameterization with respect

to arc length is

r⃗(t(s)) = cos

(
s√
2

)
i+ sin

(
s√
2

)
j+

(
s√
2

)
k

You know that smoothness is a measure of the number of continuous derivatives a function has;
a smooth curve has no corners or cusps. We can extend this idea to our current work. We call
a parameterization r⃗(t) smooth on an interval if its derivative is continuous and nonzero on that
interval. A curve is called smooth if it has a smooth parameterization. The measurement of how
sharply a smooth curve turns, or how quickly it changes direction is called curvature. For instance,
a circle has constant curvature that is proportional to the size of its radius. We define curvature
κ as the magnitude of the rate of change of the unit tangent vector with respect to arc length.
The unit tangent vector has constant length, so only changes in direction contribute to the rate of
change.
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The curvature κ of a smooth curve in a plane or in space given by r⃗(s) is given by

κ =

∥∥∥∥dTds
∥∥∥∥ ,

where T is the unit tangent vector and s is the arc length parameter.

For a smooth curve r⃗(t), we can acquire a more useful form using the chain rule:

dT

dt
=

dT

ds

ds

dt
⇒ κ(t) =

∥∥∥∥dTds
∥∥∥∥ =

∥T ′(t)∥
∥r⃗ ′(t)∥

This form expresses curvature in terms of the parameter t instead of s.

For a three-dimensional curve, curvature can be given by the formula*

κ =
∥r⃗ ′(t)× r⃗ ′′(t)∥

∥r⃗ ′(t)∥3
.

For a plane curve represented by function y = f(x) where both y′ and y′′ exist, the curvature
at the point (x, y) is given by

κ =
|y′′|

[1 + (y′)2]
3/2

.

*If you are interested in the proof, here it is:

We begin with the definition of the unit tangent vector:

T(t) =
r⃗ ′(t)

∥r⃗ ′(t)∥
and ∥r⃗ ′(t)∥ =

ds

dt

Differentiating r⃗(t) = ∥r⃗ ′(t)∥T(t) using the product rule gives us

r⃗ ′′(t) =
d2s

dt2
T(t) +

ds

dt
T ′(t).

Now take the cross product of r⃗ ′(t) and r⃗ ′′(t):
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r⃗ ′(t)× r⃗ ′′(t) =

(
ds

dt

)2

(T(t)×T ′(t))

Since T(t) ⊥ T ′(t), their cross product is orthogonal, and its magnitude is:

∥r⃗ ′(t)× r⃗ ′′(t)∥ =

(
ds

dt

)2

∥T(t)×T ′(t)∥ =

(
ds

dt

)2

∥T ′(t)∥

Now solve for ∥T ′(t)∥:

∥T ′(t)∥ =
∥r⃗ ′(t)× r⃗ ′′(t)∥(

ds
dt

)2 =
∥r⃗ ′(t)× r⃗ ′′(t)∥

∥r⃗ ′(t)∥2

Finally, recall that curvature is

κ(t) =
∥T ′(t)∥
∥r⃗ ′(t)∥

=
∥r⃗ ′(t)× r⃗ ′′(t)∥

∥r⃗ ′(t)∥3
.

This graph represents the curvature of a function y = f(x) where curvature is inversely proportional
to the radius of the inscribed circle. Image credit: Strang & Herman
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EXAMPLE 3.16

Find the curvature of a circle of radius a. Assume the circle is centered at the origin.

Solution:

We will use this as our parameterization:

r⃗(t) = a cos t i+ a sin t j

Let’s differentiate with respect to t:

r⃗ ′(t) = −a sin t i+ a cos t j ⇒ ∥r⃗ ′(t)∥ = a

The unit tangent vector is

T(t) =
r⃗ ′(t)

∥r⃗ ′(t)∥
=

−a sin t i+ a cos t j

a
= − sin t i+ cos t j.

Now we will differentiate T(t):

T ′(t) = − cos t i− sin t j ⇒ ∥T ′(t)∥ = 1

Plugging this into the formula for curvature yields

κ(t) =
∥T ′(t)∥
∥r⃗ ′(t)∥

=
1

a

https://rhoclouds.github.io


https://rhoclouds.github.io 129

EXAMPLE 3.17

Find the curvature of the twisted cubic r⃗(t) = ⟨t, t2, t3⟩ at a general point and at (0, 0, 0).

Solution:

We compute the derivatives and get r⃗ ′(t) = ⟨1, 2t, 3t2⟩ and r⃗ ′′(t) = ⟨0, 2, 6t⟩.

Next, compute the cross product:

r⃗ ′(t)× r⃗ ′′(t) =

∣∣∣∣∣∣∣∣∣
i j k

1 2t 3t2

0 2 6t

∣∣∣∣∣∣∣∣∣ = (6t2) i− (6t) j+ (2)k = ⟨6t2, −6t, 2⟩

Now compute the magnitudes:

∥r⃗ ′(t)∥ =
√

1 + 4t2 + 9t4 ⇒ ∥r⃗ ′(t)× r⃗ ′′(t)∥ =
√

36t4 + 36t2 + 4 =
√

4 + 36t2 + 36t4

Using the curvature formula yields the curvature at a general point:

κ(t) =
∥r⃗ ′(t)× r⃗ ′′(t)∥

∥r⃗ ′(t)∥3
=

√
4 + 36t2 + 36t4

(1 + 4t2 + 9t4)
3/2

At the origin, where t = 0, we have

κ(0) =

√
4

(1)3/2
=

2

1
= 2.
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At a given point on a smooth space curve r⃗(t), there are many vectors that are orthogonal to the
unit tangent vector T(t). Because T(t) is a unit vector, its magnitude is always 1 for all t. In other
words, ∥T(t)∥ = 1. And this implies that T(t) · T(t) = 1. Then, we differentiate both sides with
respect to t:

d

dt
(T(t) ·T(t)) = 2T(t) · T⃗ ′(t) = 0

Thus T(t) · T⃗ ′(t) = 0, which tells us that T⃗ ′(t) is always orthogonal to T(t). Therefore, it points
in the direction that the tangent vector is turning. If we normalize this, we get a unit vecor that
points in the direction of curvature which is known as the principle unit normal vector N(t).

For a three-dimensional smooth curve represented by r⃗ over an open interval where T⃗ ′(t) ̸= 0⃗,
the principal unit normal vector at t is defined as

N(t) =
T(t)∥∥∥T⃗ ′(t)

∥∥∥ .
Then the binormal vector is given by

B(t) = T(t)×N(t),

where T(t) is the unit tangent vector.

The binormal vector is orthogonal to both the unit tangent vector and the normal vector. With
that, we have completed the basics of what is known as the Frenet-Serret frame. You can think
of it as the frame of reference for describing a curve’s geometry as you move along it. This is
important in the discipline of differential geometry.
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Vectors T, N, and B on a helix

Here are those same vectors at multiple points along the helix.
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EXAMPLE 3.18

Find the unit normal vector for the vector-valued function r⃗(t) = 4 cos t i− 4 sin t j.

Solution:

We first compute the unit tangent vector T(t) = r⃗ ′(t)
∥r⃗ ′(t)∥ :

−4 sin t i− 4 cos t j√
(−4 sin t)2 + (−4 cos t)2

=
−4 sin t i− 4 cos t j√
16 sin2 t+ 16 cos2 t

=
−4 sin t i− 4 cos t j√
16(sin2 t+ cos2 t)

=
−4 sin t i− 4 cos t j√

16
=

−4 sin t i− 4 cos t j

4
= − sin t i− cos t j

Now differentiate T(t) to find the unit normal vector N(t) = T⃗ ′(t)

∥T⃗ ′(t)∥
:

T⃗ ′(t) = − cos t i+ sin t j ⇒ ∥T⃗ ′(t)∥ =
√

(− cos t)2 + (sin t)2 =
√

cos2 t+ sin2 t =
√
1 = 1

N(t) =
d
dt (− sin t i− cos t j)∥∥ d
dt (− sin t i− cos t j)

∥∥ =
− cos t i+ sin t j√
(− cos t)2 + (sin t)2

= − cos t i+ sin t j

We have a three-dimensional system that follows the Frenet-Serret frame. The normal plane at
point P is the plane perpendicular to T(t), spanned by the vectors N(t) and B(t). It contains all
of the lines orthogonal to T(t). The plane spanned by T(t) and N(t) is known as the osculating
plane at P , which is the plane that best approximates the curve’s local behavior at that point.
The word “osculating” comes from the Latin word osculum, meaning “kiss.” It is the plane that
kisses the curve most closely at that point.

Now imagine a circle that lies in the osculating plane and shares the same position, tangent,
and curvature as the curve at point P . This circle is called the osculating circle (or circle of
curvature). It lies on the concave side of the curve (toward which N(t) points) and has radius of
curvature

R =
1

κ
,

where κ is the curvature at P .
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This is the osculating circle at point P on the curve C. The circle is tangent to the curve at point
P and lies in the osculating plane. Image credit: Strang & Herman

EXAMPLE 3.19

Find the equation of the osculating circle of the curve defined by the function y = x3−3x+1
at the point x = 1.

Solution:

First, we compute the curvature κ of the graph of a function y = f(x) using the formula

κ =
|f ′′(x)|

(1 + (f ′(x))2)
3/2

.

For f(x) = x3 − 3x+ 1, we have f ′(x) = 3x2 − 3 and f ′′(x) = 6x. Plugging these in, we get

κ =
|6x|

[1 + (3x2 − 3)2]
3/2

.

At x = 1, this becomes

κ =
6

(1 + 02)
3/2

=
6

1
= 6.

So the radius of curvature is

R =
1

κ
=

1

6
.
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EXAMPLE 3.19 (CONTINUED)

Now we need to find the coordinates of the center of the circle. When x = 1, the slope of the
tangent line is f ′(1) = 0. This tells us that the tangent line is horizontal here, so the normal
vector which is always perpendicular to the tangent must be vertical. Thus, the center of
the osculating circle is directly above P = (1, f(1)) = (1,−1), in the direction of the normal.
Thus, the center is

C =

(
1,−1 +

1

6

)
=

(
1,−5

6

)
.

Now we write the equation of the circle with radius r = 1
6 and center (h, k) =

(
1,− 5

6

)
in the

form (x− h)2 + (y − k)2 = r2:

(x− 1)2 +

(
y +

5

6

)2

=

(
1

6

)2

.

The osculating circle (red) is drawn on the curve (blue):
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3.4 Motion in Space

Previously, you studied motion along a straight line using scalar functions for position x(t), velocity
v(t) = x′(t), and acceleration a(t) = v′(t). You likely used these to describe the motion of some-
thing very simple such as a car, or more generally particle motion along the x-axis. In this section,
we extend this idea to motion in two or three dimensions. We will use vector-valued functions to
describe the motion of an object in space.

Suppose a particle is moving through space such that it can be described by a position vector r⃗(t)
at time t. For small values of h, the vector

r⃗(t+ h)− ⃗r(t)

h

approximates the direction of the particle as it moves along the curve r⃗(t). Furthermore, its
magnitude measures the absolute value of the displacement vector per unit time. Thus, the vector
gives the average velocity over a time interval of length h. If you take its limit, you will get the
velocity vector:

v⃗(t) = lim
h→0

r⃗(t+ h)− r⃗(t)

h
= r⃗ ′(t)

The velocity vector is the tangent vector and it points in the direction of the tangent line. If you
simply wanted speed, you would compute ∥v⃗(t)∥. Now, let’s look at acceleration which is given by

a⃗(t) = v⃗ ′(t) = r⃗ ′′(t).

We can summarize the formulas for motion as such:

Quantity Two Dimensions Three Dimensions

Position r⃗(t) = x(t) i+ y(t) j r⃗(t) = x(t) i+ y(t) j+ z(t)k

Velocity v⃗(t) = x′(t) i+ y′(t) j v⃗(t) = x′(t) i+ y′(t) j+ z′(t)k

Acceleration a⃗(t) = x′′(t) i+ y′′(t) j a⃗(t) = x′′(t) i+ y′′(t) j+ z′′(t)k

Speed ∥v⃗(t)∥ =
√
(x′(t))2 + (y′(t))2 ∥v⃗(t)∥ =

√
(x′(t))2 + (y′(t))2 + (z′(t))2

Let’s say you are driving on a curvy road. If you were to simply drive in a straight line, you would
go off the road. The velocity at which you are traveling can be described by velocity vectors, which
are tangent to the path traveled by your car:
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Image credit: Strang & Herman

We obviously don’t want to crash into the barrier on the side of the road, so you have to turn your
steering wheel to stay on the road. Despite the fact that the magnitude of your velocity (speed)
is not changing, your direction is constantly going to change to keep you on the road. Your accel-
eration vector points to whichever direction you turn towards; if you turn right, your acceleration
vector also points to the right. And when you turn left to go along the next segment of the road,
your acceleration vector will point to the left. Even if you are keeping your foot’s position on the
gas pedal constant (constant speed), your velocity and acceleration vectors are constantly changing:

Image credit: Strang & Herman
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EXAMPLE 3.20

The position vector of an object moving in a plane is given by r⃗(t) = t3 i + t2 j. Find the
velocity, speed, and acceleration, t = 1. Then, graph the results.

Solution:

The velocity vector is the first derivative:

v⃗(t) = r⃗ ′(t) = 3t2 i+ 2t j

The speed is the magnitude of the velocity:

∥v⃗(t)∥ =
√
(3t2)2 + (2t)2 =

√
9t4 + 4t2

The acceleration vector is the second derivative:

a⃗(t) = r⃗ ′′(t) = 6t i+ 2 j

And now we evaluate each at t = 1:

v⃗(1) = 3 i+ 2 j ⇒ ∥v⃗(1)∥ =
√
13

a⃗(1) = 6 i+ 2 j

https://rhoclouds.github.io


https://rhoclouds.github.io 138

EXAMPLE 3.20 (CONTINUED)

Here is the graph:
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EXAMPLE 3.21

A moving particle starts at an initial position r⃗(0) = ⟨1, 0, 0⟩ with initial velocity
v⃗(0) = i− j+k and acceleration a⃗(t) = 4t i+6t j+k. Find the velocity and position vectors
at time t.

Solution:

Since a⃗(t) = v⃗ ′(t), we integrate to find velocity:

v⃗(t) =

∫
a⃗(t) dt =

∫
(4t i+ 6t j+ k) dt = 2t2 i+ 3t2 j+ tk+ C⃗.

To determine C⃗, use the initial condition v⃗(0) = i− j+ k. Plug in to get

v⃗(0) = C⃗ = i− j+ k.

Thus, the velocity vector becomes

v⃗(t) = (2t2 + 1) i+ (3t2 − 1) j+ (t+ 1)k.

Now integrate v⃗(t) to find position

r⃗(t) =

∫
v⃗(t) dt =

∫ [
(2t2 + 1) i+ (3t2 − 1) j+ (t+ 1)k

]
dt.

r⃗(t) =

(
2

3
t3 + t

)
i+
(
t3 − t

)
j+

(
1

2
t2 + t

)
k+ D⃗.

To find the constant of integration D⃗, plug in r⃗(0) = ⟨1, 0, 0⟩ to get D⃗ = i. Finally,

r⃗(t) =

(
2

3
t3 + t+ 1

)
i+
(
t3 − t

)
j+

(
1

2
t2 + t

)
k.
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If a⃗(t) is a known acceleration vector, then velocity is given by

v⃗(t) = v⃗(t0) +

∫ t

t0

a⃗(u) du.

Similarly, if velocity is known, then position is given by:

r⃗(t) = r⃗(t0) +

∫ t

t0

v⃗(u) du.

If the force acting on a particle is known, the acceleration can be determined using Newton’s
second law:

F⃗ (t) = ma⃗(t)

EXAMPLE 3.22

Suppose an object of mass m moves in a circular path at constant angular speed ω, with
position vector r⃗(t) = a cos(ωt) i+ a sin(ωt) j. Find the force vector.

Solution:

We differentiate to obtain velocity and acceleration:

v⃗(t) = r⃗ ′(t) = −aω sin(ωt) i+ aω cos(ωt) j,

a⃗(t) = v⃗ ′(t) = −aω2 cos(ωt) i− aω2 sin(ωt) j.

Then, using Newton’s second law yields

F⃗ (t) = ma⃗(t) = −mω2 (a cos(ωt) i+ a sin(ωt) j) = −mω2r⃗(t).

This result shows that the force vector points opposite to the position vector and therefore
always toward the origin. Such a force is called a centripetal (center-seeking) force.
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We will now extend to projectile motion. Projectile motion is the movement of an object as it is
launched through the air, only subject to gravitational acceleration which acts downward:

Image credit: Strang & Herman

Let the vertical axis be aligned with j. Ignore air resistance. Newton’s second law gives

F⃗g = −ma⃗ = −mgj ⇒ a⃗(t) = −gj.

v⃗ ′(t) = −g j.

Let’s now integrate. We have

v⃗(t) =

∫
−g j dt = −gt j+ C⃗1,

for some constant vector C⃗1.

To determine C⃗1, we use the initial condition v⃗(0) = v⃗0.

Substituting this into our velocity equation yields the following:

v⃗(0) = −g(0) j+ C⃗1 = v⃗0 ⇒ C⃗1 = v⃗0

So the velocity vector becomes
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v⃗(t) = −gt j+ v⃗0.

and position becomes

s⃗(t) = −1

2
gt2j+ v⃗0t+ s⃗0.

Let’s now factor in what happens if we launch from an angle.

We assume an object is launched from the origin with initial speed v0 at an angle θ above the
horizontal. The motion occurs in a vertical plane under the influence of gravity g, with no air
resistance.

The position of the object at time t is given by these scalar parametric equations:

x(t) = (v0 cos θ) t, y(t) = (v0 sin θ) t−
1

2
gt2

To find the horizontal range d, we solve for the time when the object returns to the ground, or
when y = 0. Solving 0 = (v0 sin θ) t− 1

2gt
2 = t

(
v0 sin θ − 1

2gt
)
yields t = 0 or t = 2v0 sin θ

g .

The second root gives the total time of flight. Plug this into x(t) to find the horizontal range:

d = x

(
2v0 sin θ

g

)
= (v0 cos θ)

2v0 sin θ

g
=

v20 sin(2θ)

g

Thus, the range is maximized when sin(2θ) = 1, which occurs when

θ =
π

4
= 45◦.

Let’s now transition to using vectors.

Suppose an object is launched from the origin at time t = 0, with initial speed v0 at an angle θ
above the horizontal. Then, we decompose the initial velocity vector v⃗0 into horizontal and vertical
components:

v⃗0 = v0 cos θ i+ v0 sin θ j.

We can use the fact that all acceleration is due to gravity and say a⃗(t) = −g j. Then we can
integrate with respect to time to obtain the position function s⃗(t). The velocity function is:
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v⃗(t) = v⃗0 − gt j = v0 cos θ i+ (v0 sin θ − gt) j.

Integrating this velocity vector yields the position vector:

s⃗(t) =

∫
v⃗(t) dt =

∫
(v0 cos θ i+ (v0 sin θ − gt) j) dt.

= v0t cos θ i+

(
v0t sin θ −

1

2
gt2
)
j.

The coefficient of i, v0t cos θ, gives the horizontal displacement at time t. The coefficient of j,
v0t sin θ − 1

2gt
2, gives the vertical displacement at time t. Maximum height is when vy(t) = 0. In

other words, when

t =
v0 sin θ

g
.

Total flight time is

t =
2v0 sin θ

g
.

Substituting t =
2v0 sin θ

g
into s⃗(t):

s⃗

(
2v0 sin θ

g

)
= v0

(
2v0 sin θ

g

)
cos θ i+

[
v0

(
2v0 sin θ

g

)
sin θ − 1

2
g

(
2v0 sin θ

g

)2
]
j

The vertical term simplifies to zero, so we are left with:

s⃗

(
2v0 sin θ

g

)
=

(
2v20 sin θ cos θ

g

)
i =

(
v20 sin 2θ

g

)
i

So, the maximum horizontal distance, or range, is

R =
v20 sin 2θ

g
i.

To maximize the range, we differentiate to find an angle that maximizes the range of the projectile:
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d

dθ

(
v20 sin 2θ

g

)
=

2v20 cos 2θ

g
= 0

cos 2θ = 0 ⇒ θ = 45◦

Therefore, the maximum range occurs when:

R =
v20 sin 90

◦

g
=

v20
g

s⃗max =

(
v20
g

)
i

We just analyzed the same physical motion using both a scalar and vector approach, and the result
(θ = 45◦) was the same! We looked at it from two different perspectives, but make no mistake: the
physics behind it all do not change.

This shows projectile motion broken down into velocity components. In particular, this shows how
changing the launch angle changes the velocity components. Image credit: Khan Academy

Higher launch angles have higher maximum height, but 45◦ is the maximized range. Image credit:
Khan Academy
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EXAMPLE 3.23

An archer fires an arrow at an angle of 40◦ above the horizontal with an initial speed of
98m/s. The height of the archer is 1.715m. Find the horizontal distance the arrow travels
before it hits the ground.

Solution:

We have s0 = 1.715m. We start by decomposing the initial velocity:

v⃗0 = 98 cos(40◦) i+ 98 sin(40◦) j

Using projectile motion with initial height, the position function is

s⃗(t) = v0t cos θ i+

(
s0 + v0t sin θ −

1

2
gt2
)
j.

We find when the projectile hits the ground by setting the vertical component to zero:

s0 + v0t sin θ −
1

2
gt2 = 0

We plug in the known values to get 1.715 + 98t sin(40◦) − 1
2 (9.8)t

2 = 0. Solving this yields
t = 12.8829 s. We can then find the horizontal distance the arrow travels before hitting the
ground by plugging our values into the horizontal component of the position function:

x(t) = 98t cos 40◦

= (98 m/s)(12.8829 s) cos 40◦

= 967.15 m

When it comes to studying particle motion, we can decompose acceleration into two compo-
nents, one in the direction of the tangent and the other in the direction of the normal.

Let v = ∥v⃗(t)∥ be the speed of the particle. Then the unit tangent vector is

T(t) =
r⃗ ′(t)

∥r⃗ ′(t)∥
=

v⃗(t)

∥v⃗(t)∥
=

v⃗

v
.

Thus, v⃗ = vT.
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Now differentiate both sides with respect to t:

a⃗ = v⃗ ′ =
dv

dt
T+ v

dT

dt

We now express dT
dt in terms of the unit normal vector N. From the curvature formula:

κ =
∥T ′∥
∥r⃗ ′∥

=
∥T ′∥
v

⇒ ∥T ′∥ = κv

Since T ′ = ∥T ′∥N, we have

T ′ = κvN

Substitute back into the acceleration formula to get

a⃗ =
dv

dt
T+ v (κvN) =

dv

dt
T+ κv2 N

So the acceleration vector decomposes as:

a⃗ =
dv

dt
T+ κv2 N

And now we can get our final formula. If an object is moving along a smooth curve r⃗(t), we can
express its acceleration as the sum of:

a⃗(t) = aT T(t) + aN N(t)

where T(t) is the unit tangent vector (direction of motion), N(t) is the unit normal vector (direction
of curvature), aT = dv

dt is the tangential component (change in speed), and aN = κv2 is the normal
component (change in direction). You can also think of the tangential and normal components of
acceleration as the parallel and perpendicular components, respectively:
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The parallel component is aligned with velocity and is what changes speed. The perpendicular
component is orthogonal to velocity and is what changes direction. Image credit: University of
Manchester

Acceleration only lies in the osculating plane defined by T and N. The binormal B is absent. This
is because T represents direction and N represents direction; these two are all we need to describe
acceleration. B represents torsion, or essentially rotation out of the curve’s plane, which is not
needed. Notice that the tangential component of acceleration is dv

dt , the rate of change of speed,
whereas the normal component of acceleration is κv2. κv2 is curvature times the square of the
speed, which is responsible for changing direction. This makes sense in the real world because if
you take a sharp turn in a car, κ is large, so the component of the acceleration perpendicular to
the motion is also large. This might result in you getting slammed against the car door. Going at
a very high speed has an even more meaningful result because it is squared. Think about why the
normal component of acceleration is sometimes called the centripetal component of acceleration.

Let’s say we want expressions for aT and aN that depend only on r⃗(t), r⃗ ′(t), and r⃗ ′′(t). We start
with the following:

v⃗ = vT, a⃗ = v⃗ ′ = v′ T+ κv2 N

Dot both sides with v⃗ = vT. Keep in mind that T ·T = 1 ⇒ T ·N = 0:

v⃗ · a⃗ = vT ·
(
v′ T+ κv2 N

)
= vv′ (T ·T) + κv3 (T ·N) = vv′

Therefore
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aT = v′ =
v⃗ · a⃗
∥v⃗∥

=
r⃗ ′(t) · r⃗ ′′(t)

∥r⃗ ′(t)∥
.

To get the normal component, we use the curvature formula:

κ =

∥∥r⃗ ′(t)× r⃗ ′′(t)
∥∥

∥r⃗ ′(t)∥3
⇒ aN = κv2 = κ ∥r⃗ ′(t)∥2

Finally, we have

aN =

∥∥r⃗ ′(t)× r⃗ ′′(t)
∥∥

∥r⃗ ′(t)∥
.

These give aT and aN without needing unit vectors, which can often be easier to compute.
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EXAMPLE 3.24

A particle moves along a space curve with position function r⃗(t) = ⟨t2, t2, t3⟩. Find the
tangential and normal components of the acceleration vector.

Solution:

We begin by computing the velocity, speed, and acceleration:

r⃗ ′(t) = ⟨2t, 2t, 3t2⟩ ⇒ ∥r⃗ ′(t)∥ =
√

(2t)2 + (2t)2 + (3t2)2 =
√
8t2 + 9t4, r⃗ ′′(t) = ⟨2, 2, 6t⟩

Now compute the dot product:

r⃗ ′(t) · r⃗ ′′(t) = (2t)(2) + (2t)(2) + (3t2)(6t) = 4t+ 4t+ 18t3 = 8t+ 18t3

This gets substituted into the formula for the tangential component:

aT =
r⃗ ′(t) · r⃗ ′′(t)

∥r⃗ ′(t)∥
=

8t+ 18t3√
8t2 + 9t4

Next, compute the cross product r⃗ ′(t)× r⃗ ′′(t):

r⃗ ′(t)× r⃗ ′′(t) =

∣∣∣∣∣∣∣∣∣
i j k

2t 2t 3t2

2 2 6t

∣∣∣∣∣∣∣∣∣ = (2t)(6t)− (3t2)(2) i−
[
(2t)(6t)− (3t2)(2)

]
j = ⟨6t2,−6t2, 0⟩

∥∥r⃗ ′(t)× r⃗ ′′(t)
∥∥ =

√
(6t2)2 + (−6t2)2 =

√
72t4 = 6

√
2 t2

So the normal component is

aN =

∥∥r⃗ ′(t)× r⃗ ′′(t)
∥∥

∥r⃗ ′(t)∥
=

6
√
2 t2√

8t2 + 9t4
.
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Astronomer Johannes Kepler formulated three laws that describe the motion of planets. His work
was published in 1609, which was 78 years before Newton published Principia Mathematica in 1687.
Kepler’s first law, also known as the law of ellipses, says that the path of any planet around the Sun
follows an elliptical orbit with the Sun at one focus of the ellipse. Kepler’s second law, also known
as the law of equal areas, says that a line drawn from the center of the Sun to the center of a planet
sweeps out equal areas in equal times. This means that a planet moves faster when it’s closer to
the Sun (at perihelion) and slower when it’s farther from the Sun (at aphelion). Finally, Kepler’s
third law, also known as the law of harmonies, says that the ratio of the squares of the periods of
any two planets is equal to the ratio of the cubes of the lengths of their semi-major orbital axes.

Kepler’s laws are among the most important in all of physics, but Newton provided the rigorous
mathematical foundation for all of it. Indeed, Kepler’s laws are consequences of Newton’s second
law, law of universal gravitation, and work on calculus.

Assuming that the Sun is at the origin and a planet of mass m has position vector r⃗(t). Newton’s

second law gives F⃗ = ma⃗ and his law of gravitation gives

F⃗ = −GMm

r3
r⃗ = −GMm

r2
u,

where F⃗ is the gravitational force on the planet, m is the mass of the planet, M is the mass of the
sun, G is the gravitational constant, r = ∥r⃗∥, and u = ( 1r )r⃗ is the unit vector in the direction of r⃗.

From this, we find that

a⃗ = −GM

r3
r⃗.

Since acceleration a⃗ is always parallel to r⃗, it follows that r⃗ × a⃗ = 0, and so

d

dt
(r⃗ × v⃗) = r⃗ ′ × v⃗ + r⃗ × v⃗ ′ = v⃗ × v⃗ + r⃗ × a⃗ = 0⃗.

Therefore r⃗ × v⃗ = h⃗ where h⃗ is a constant vector. We may also assume that h⃗ is nonzero and that
r⃗ and v⃗ are not parallel. h⃗ is orthogonal to the plane of motion, meaning the planet moves in a
fixed plane. The orbit is a plane curve.

We will now rewrite h⃗:

h⃗ = r⃗ × v⃗ = r⃗ × r⃗ ′ = r u× (r u)′

Differentiate using the product rule:
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= r u× (r′ u+ r u′) = r r′ u× u+ r2 u× u′

Keep in mind that u× u = 0⃗:

h⃗ = r2 u× u′

We now have

a⃗× h⃗ = −GM

r2
u× h⃗

Keeping in mind that u · u = 1 and ∥u(t)∥ = 1 means that u · u′ = 0, we have

a⃗× h⃗ = GM u.

Integrating both sides yields

v⃗ × h⃗ = GM u+ c⃗,

where c⃗ is a constant vector.

At this point, it would be convenient to choose the coordinate axes so that the standard basis vector
k points in the direction of the vector h⃗. This means that the planet moves in the xy-plane. Since
v⃗× h⃗ and u are perpendicular to h⃗, it follows that c lies in the xy-plane. We must then choose the
x- and y-axes so that the vector i lies in the direction of c⃗. This simplifies the expression because
now c⃗ = c i, and the angle θ becomes the polar angle between r⃗ and the x-axis.

Take the dot product of both sides with r⃗:

r⃗ · (v⃗ × h⃗) = GM r⃗ · u+ r⃗ · c⃗ = GMr + r ∥c⃗∥ cos θ

This becomes

r⃗ · (v⃗ × h⃗) = r · (GM + c cos θ) ⇒ r =
r⃗ · (v⃗ × h⃗)

GM + c cos θ
.

Letting eccentricity e =
c

GM
, we get
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r =
h2/(GM)

1 + e cos θ
=

eh2/c

1 + e cos θ

Finally, if we let d =
h2

c
, then

r =
ed

1 + e cos θ

This is the polar equation of a conic section with focus at the origin, semi-latus rectum d which
controls the scale of the ellipse, and eccentricity e. A planet that stays in orbit must have an orbit
that is a closed curve. Thus, this cannot be a parabola or a hyperbola; it must be an ellipse. And
with that, we have proved Kepler’s first law.

A visualization of Kepler’s first law. Image credit: ESO

Let’s move on to Kepler’s second law. We express the position vector of the planet in polar
coordinates as

r(t) = r cos θ(t) i+ r sin θ(t) j

To compute angular momentum, we evaluate the cross product r × v. First, we differentiate:

v =
d

dt
(r cos θ i+ r sin θ j) = r′ cos θ i− r

dθ

dt
sin θ i+ r′ sin θ j+ r

dθ

dt
cos θ j

Group terms as such:

v = r′(cos θ i+ sin θ j) + r
dθ

dt
(− sin θ i+ cos θ j)
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Now the position vector is

r = r(cos θ i+ sin θ j).

Then the angular momentum is

h⃗ = r × v = r(cos θ i+ sin θ j)×
[
r′(cos θ i+ sin θ j) + r

dθ

dt
(− sin θ i+ cos θ j)

]
.

The cross product of any vector with itself is zero, so the first term vanishes. The only nonzero
part is

h⃗ = r · r dθ
dt

((cos θ i+ sin θ j)× (− sin θ i+ cos θ j)) .

This simplifies to

h⃗ = r2
dθ

dt
k.

So the magnitude of angular momentum is

∥h⃗∥ = r2
dθ

dt
.

Now consider the area A(t) swept out by the radius vector. In polar coordinates, the infinitesimal
area swept is

dA =
1

2
r2dθ ⇒ dA

dt
=

1

2
r2

dθ

dt
.

Substitute the expression for r2
dθ

dt
:

dA

dt
=

1

2
h

Since h is constant (from conservation of angular momentum), the rate of area sweep is constant.
This proves Kepler’s second law.
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A visualization of Kepler’s second law. Image credit: ESO

Let T be the period of a planet orbiting the Sun, the time it takes to complete one full revolution
around its elliptical orbit. Suppose the ellipse has semi-major axis a and semi-minor axis b, so the
total area enclosed by the orbit is πab.

From Kepler’s second law, we know that the rate at which area is swept out is constant:

dA

dt
=

1

2
h

Over one full revolution, the planet sweeps out the total area A = πab. So we integrate over one
full period:

∫ T

0

dA

dt
dt = A = πab =

1

2
hT

Solving for T , we find:

T =
2πab

h

Next, recall that the polar equation of the orbit is:

r =
ed

1 + e cos θ
where d =

h2

GM

From conic geometry, the semi-latus rectum d of an ellipse is related to the axes by
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d =
b2

a
.

So we substitute to get

h2

GM
=

b2

a
⇒ h2 =

GMb2

a
.

Now plug this into our earlier formula for T :

T =
2πab

h
⇒ T 2 =

4π2a2b2

h2

Substitute for h2 to get

T 2 =
4π2a2b2

GMb2

a

=
4π2a3

GM
.

This gives the final form:

T 2 =
4π2

GM
a3

This proves Kepler’s third law.

A visualization of Kepler’s third law. Image credit: NASA
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4 Multivariable Differentiation

Most of, if not all, the rigorous problems in your learning journey up to this point have conveniently
been dependent on only one variable. However, the reality is that much of the real world’s quantities
depend on more than one variable. In this chapter, we will learn how to use and apply multivariable
functions.

4.1 Multivariable Functions

For functions of a single variable, we map values of one variable to values of another variable. For
functions of multiple variables, we map multiple variables to another variable.

A function of two variables z = f(x, y) maps each ordered pair (x, y) in a subset D of the real
plane R2 to a unique real number z. The set D is the domain of the function and its range
is the subset of all real numbers R that has at least one ordered pair (x, y) ∈ D such that
f(x, y) = z.

For instance, wind chill refers to how cold it truly feels when it’s windy. The measurement is known
as the wind chill index W , and is dependent on the actual air temperature T and wind speed v.
This would be written as W = f(T, v). The following table contains the values of W :
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Wind Chill Chart. Image credit: NWS

When the temperature is 5◦F and the wind speed is 40 mph, your body would feel as if it were
−22◦F. This would be written as

f(5, 40) = −22.

And this would mean that if you don’t get to warmth within 30 minutes, you would get frostbite!
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EXAMPLE 4.1

Find the domain and range of each of the following functions:

(a) f(x, y) = 3x+ 5y + 2

(b) g(x, y) =
√
9− x2 − y2

Solution:

(a) This is a linear function in two variables. There are no values that could cause either
variable to be undefined, so the function is defined for all real inputs. Therefore, the domain
is R2. To determine the range, note that for any real number z, we can solve the equation

3x+ 5y + 2 = z ⇒ x =
z − 2− 5y

3

We can set y = 0 to get a solution ( z−2
3 , 0). This shows that every real z has at least one

corresponding (x, y) ∈ R2 such that f(x, y) = z. Thus, the range is R.
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EXAMPLE 4.1 (CONTINUED)

(b) The function g(x, y) contains a square root, so the expression inside must be nonnegative:

9− x2 − y2 ≥ 0 ⇒ x2 + y2 ≤ 9

This inequality describes a solid disk of radius 3 centered at the origin. So the domain is:

{
(x, y) ∈ R2 | x2 + y2 ≤ 9

}
.

The maximum value of g(x, y) occurs at the origin, where x = y = 0. This gives:

g(0, 0) =
√
9− 0− 0 = 3

The minimum value occurs on the boundary, where x2 + y2 = 9, giving:

g(x, y) =
√
0 = 0

Thus, given any value c between 0 and 3, we can find a set of points inside the domain of g)

such that g(x, y) = c. That is,
√

9− x2 − y2 = c. Simplifying this yields x2 + y2 = 9 − c2

which is greater than 0. This describes a circle where any point on it satisfies g(x, y) = c.
The range is [0, 3].
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EXAMPLE 4.1 (CONTINUED)

Here is a mesh surface plot of the range:

Please run the MATLAB code yourself and have a look!

[x, y] = meshgrid(linspace(-3, 3, 100));

z = sqrt(9 - x.^2 - y.^2);

z(imag(z) ~= 0) = NaN; % Remove imaginary values

figure

surf(x, y, z, 'EdgeColor ', 'none')
colormap turbo

axis equal

view(45, 30)

xlabel('$\it{x}$', 'Interpreter ', 'latex ', 'FontSize ', 14)

ylabel('$\it{y}$', 'Interpreter ', 'latex ', 'FontSize ', 14)

zlabel('$\it{z}$', 'Interpreter ', 'latex ', 'FontSize ', 14)

title('Surface: $g(x, y) = \sqrt{9 - x^2 - y^2}$', ...

'Interpreter ', 'latex ', 'FontSize ', 14)

ex4point1.m


[x, y] = meshgrid(linspace(-3, 3, 100));
z = sqrt(9 - x.^2 - y.^2);
z(imag(z) ~= 0) = NaN;  % Remove imaginary values

figure
surf(x, y, z, 'EdgeColor', 'none')
colormap turbo
axis equal
view(45, 30)

xlabel('$\it{x}$', 'Interpreter', 'latex', 'FontSize', 14)
ylabel('$\it{y}$', 'Interpreter', 'latex', 'FontSize', 14)
zlabel('$\it{z}$', 'Interpreter', 'latex', 'FontSize', 14)
title('Surface: $g(x, y) = \sqrt{9 - x^2 - y^2}$', ...
    'Interpreter', 'latex', 'FontSize', 14)
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Graphing multivariable functions, even with a computer, can be difficult. For a function z = f(x, y),
every point in the plane has an ordered pair (x, y) associated with it. Formally, the graph of f with
domain D is the set of all points x, y, z in R3 such that z = f(x, y) ∈ D and (x, y) ∈ D. You can
imagine the xy-plane like a map on a table. Then, every point z in the domain of the function tells
you how far up (z > 0) or down (negative z < 0) you go from that point on the map. Over time,
as you plot more points, you begin to trace out a two-dimensional surface that is the graph of f .

Mesh Surface Plot of f(x, y) = e−0.1(x2+y2) · 3 cos(x) sin(y)

4.2 Level Curves

While mesh surface plots may look like mountains, the resemblance in level curves is even more
striking.

Let f(x, y) with domain D ⊆ R2 → R be a real-valued function, and let z be be a constant
number in the range of f .

The level curve L of f corresponding to the value z is the set of all points (x, y) ∈ D such that

Lz(f) = {(x, y) ∈ D | f(x, y) = z} .
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Topographic Map of Cadillac Mountain in Acadia National Park. Image credit: USGS

US Surface Temperature Map with Isotherms. Image Credit: NOAA

Recall the function g(x, y) =
√
9− x2 − y2 with range [0, 3]. If we pick any number in this interval

such as c = 2, the corresponding level curve is given by

√
9− x2 − y2 = 2.

Solving this yields x2 + y2 = 5. This is the equation of a circle centered at the origin with radius√
5. If we were to repeat the process we would have circle equations corresponding to c = 0, 1, 2,

and 3. Note that c = 3 yields x2 + y2 = 0 which is simply the origin. Graphing them would look
like this:
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If you were to shade in the blue circle given by c = 0, that would give you a graph of the domain of
g(x, y). However, the graph here with various circles, or level curves, is called a contour map. You
may recognize level curves in topographical maps, isotherms, isobars, or equipotential lines. The
connection between all three of these is that each curve represents something of a constant value.

• In topographic maps, each contour represents constant elevation.

• For isotherms, each curve shows constant temperature.

• For isobars, the curves indicate constant pressure.

• For equipotential lines, they represent constant potential energy.
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Contour maps are not a new idea either:

Isotherm Curves of the Northern Hemisphere, 1845. Image credit: Library of Congress

Equipotential lines showing the electric potential of a dipole. Image credit: HyperPhysics
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EXAMPLE 4.2

Given the function f(x, y) =
√

8 + 8x− 4y − 4x2 − y2, create a contour map. Then, find
the domain and range of f .

Solution:

To find the level curve for c = 0, we set f(x, y) equal to 0 and solve. This gives 0 =√
8 + 8x− 4y − 4x2 − y2. Solving this yields

(x− 1)2

4
+

(y + 2)2

16
= 1.

This describes an ellipse centered at (1,−2).
Repeating the same process for an arbitrary c, we end up with

4(x− 1)2

16− c2
+

(y + 2)2

16− c2
= 1.

Thus, the level curve for a fixed c ∈ [0, 4) is an ellipse centered at (1,−2). When c = 4, we
can solve for the level curve as follows:

f(x, y) =
√

8 + 8x− 4y − 4x2 − y2 =
√
16− 4(x− 1)2 − (y + 2)2 = 4

4(x− 1)2 + (y + 2)2 = 0

x = 1, y = −2

Thus, the level curve is the point (−1, 2).
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EXAMPLE 4.2 (CONTINUED)

Continue this process and then graph the level curves corresponding to c = 0, 1, 2, 3 and 4:

Let’s find the domain. This is a square root function, so the radicand must be nonnegative.

We have 8+8x− 4y− 4x2− y2 ≥ 0. Equivalently, we have (x−1)2

4 + (y+2)2

16 ≤ 1. The domain
is the ellipse given by c = 0 shaded in and centered at (−1, 2). We can write this as

{
(x, y)

∣∣∣∣ (x− 1)2

4
+

(y + 2)2

16
≤ 1

}
.

As we can simplify f(x, y) to
√
16− 4(x− 1)2 − (y + 2)2 to make it easier to work with,

the range is simple to find. At (−1, 2), (x − 1)2 = 0 and (y + 2)2 = 0 which is where the
maximum value of the radicand is. The value here is 16 therefore the maximum value is√
16 = 4. The minimum value is 0. Thus, the range of the function is [0, 4].
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For fun, here is the surface f(x, y) = 1400 e−0.02[(x−2)2+(y−2)2]+1300 e−0.05[(x+4)2+(y+5)2]+1100 e−0.08[(x−6)2+(y+4)2]

and its contour map. Feel free to explore using the Python code.

contourMapAndSurface.py


import numpy as np

import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d import Axes3D



x = np.linspace(-10, 10, 200)

y = np.linspace(-10, 10, 200)

X, Y = np.meshgrid(x, y)

Z = 1400 * np.exp(-0.02 * ((X - 2)**2 + (Y - 2)**2)) + \

    1300 * np.exp(-0.05 * ((X + 4)**2 + (Y + 5)**2)) + \

    1100 * np.exp(-0.08 * ((X - 6)**2 + (Y + 4)**2))



fig = plt.figure(figsize=(12, 9))

ax = fig.add_subplot(111, projection='3d')



ax.plot_surface(X, Y, Z, cmap='Greys', edgecolor='black', linewidth=0.3, antialiased=True, alpha=1.0)



ax.contour(X, Y, Z, zdir='z', offset=0, levels=10, colors='black', linewidths=1.2)



ax.set_xlim(-10, 10)

ax.set_ylim(-10, 10)

ax.set_zlim(0, 1500)

ax.set_xticks([])

ax.set_yticks([])

ax.set_zticks([0,1400])

ax.set_xlabel(r'$\it{x}$', fontsize=14, labelpad=10)

ax.set_ylabel(r'$\it{y}$', fontsize=14, labelpad=10)

ax.set_zlabel(r'$\it{z}$', fontsize=14, labelpad=10)



ax.grid(False)

ax.view_init(elev=35, azim=45)

ax.set_box_aspect([1, 1, 0.6])



plt.tight_layout()

plt.show()
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EXAMPLE 4.3

Find a tangent line to the level curve z0 = 4 for the function z = x2 + y2 = f(x, y).

Solution:

A level curve associated with z0 = 4 is the subset of R2 given by

L4(f) = {(x, y) : f(x, y) = 4} = {(x, y) : x2 + y2 = 4}.

The contour curve would be given by C = {(x, y, 4) : f(x, y) = 4}. We will choose the point
(
√
2,
√
2) to find the tangent line which is given by y − y1 = m(x− x1):

Since the slope is the derivative of the curve, we are then looking for m = dy
dx evaluated at

x1, y1. We have to then implicitly differentiate x2 + y2 − 4 = 0:

d

dx
[x2 + y2 − 4] =

d

dx
[0]

d

dx
[x2] +

d

dx
[y2]− d

dx
[4] = 0

2x+
d

dx
[(y(x))2]− 0 = 0
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EXAMPLE 4.3 (CONTINUED)

Using the fact that d
dx [f(g(x))] = f ′(g(x))g′(x), we now have

2x+ 2 · y(x) · y′(x) = 0 ⇒ y′ =
−2x

2y
=

−x

y
.

At (
√
2,
√
2), this gives

dy

dx
= −

√
2√
2
= −1.

So the equation of the tangent line at (
√
2,
√
2) is

y −
√
2 = −1(x−

√
2) ⇒ y = −x+ 2

√
2.

The direction vector of the tangent line is thus v⃗ = ⟨1,−1⟩.

We can write the vector equation of the tangent line using vector form:

r⃗(t) = r⃗0 + tv⃗ = ⟨
√
2,
√
2⟩+ t⟨1,−1⟩ = ⟨

√
2 + t,

√
2− t⟩
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Another method of visualizing multivariable functions is called a vertical trace. While level curves
are graphed in the xy-plane, vertical traces are graphed in the xz- or yz-planes. For a function
z = f(x, y) with domain D ⊆ R2, a vertical trace of f is the set of points that satisfies the equation
f(a, y) = z for a given constant x = a or a given constant y = b. If you fix x = a, you are cutting
the surface with a vertical plane parallel to the yz-plane which shows how z changes as y changes
at x. Likewise, if you fix y = b, you are slicing with a plane parallel to the xz-plane which shows
how z changes as x changes at y.

A hyperbolic paraboloid as a surface and its contour map. Image credit: UT Austin

A paraboloid as a surface and its contour map. Image credit: UT Austin
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EXAMPLE 4.4

Find vertical traces for the function f(x, y) = sinx cos y corresponding to x = −π
4 , 0,

π
4 and

y = −π
4 , 0,

π
4 .

Solution:

We begin with traces parallel to the xz-plane. That is, fix x = c. First, we set x = −π
4 :

z = sin
(
−π

4

)
cos y = −

√
2

2
cos y

This gives a cosine curve scaled by −
√
2
2 in the plane x = π

4 . The results are summarized in
the following table:

x = c z = sin c cos y

x = −π

4
z = −

√
2

2
cos y

x = 0 z = 0

x =
π

4
z =

√
2

2
cos y

Let’s graph:

Image credit: Strang & Herman
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EXAMPLE 4.4 (CONTINUED)

Now let’s find traces parallel to the yz-plane. That is, fix y = d. Setting y = −π
4 yields

z = sinx cos
(
−π

4

)
= sinx ·

√
2

2

This gives a sine curve scaled by
√
2
2 in the plane y = π

4 . The results are summarized in the
following table:

y = d z = sinx cos d

y = −π
4 z =

√
2
2 sinx

y = 0 z = sinx

y = π
4 z =

√
2
2 sinx

Let’s graph:

Image credit: Strang & Herman
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A function of three variables f(x, y, z) assigns to each ordered triple (x, y, z) in a domain D ⊆ R3

a unique real number. That is,

f : R3 → R, f(x, y, z)

For instance, if we were trying to write a function calculate the reaction rate of an industrial
chemical process, a function could take into account three variables: the concentration of the
reactants, temperature, and the physical state of the reactants.

Let f(x, y, z) with domain D ⊆ R3 → R be a real-valued function, and let c be a constant
number in the range of f .

The level surface S of f corresponding to the value c is the set of all points (x, y, z) ∈ D
such that

Lc(f) = {(x, y, z) ∈ D | f(x, y, z) = c}.

Level surfaces for three variable functions are formed in the same fashion as level curves for two
variable functions. You simply set the function equal to a constant c and solve.

Deformation rate of wood flooring. Image credit: Huixiang Wang, Shaanxi Normal University
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We can generalize functions so that any number of variables can be considered:

A function of n variables assigns a real number z to an n-tuple x1, x2, ..., xn) of real inputs:

z = f(x1, x2, . . . , xn) = c1x1 + c2x2 + · · ·+ cnxn,

where the domain D ⊆ Rn and the output lies in R.

This is often written more compactly in vector form as

f(x⃗) = c⃗ · x⃗,

where c⃗ = ⟨c1, c2, . . . , cn⟩ and x⃗ = ⟨x1, x2, . . . , xn⟩, and the dot product gives the output.

There are three common ways to view a function f defined on a subset of Rn:

1. As a function of n real variables x1, x2, . . . , xn

2. As a function of a point in Rn (x1, x2, . . . , xn)

3. As a function of a vector x⃗ ∈ Rn x⃗ = ⟨x1, x2, ..., xn⟩
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4.3 Limits and Continuity

In single-variable calculus, recall that the limits from both the right-hand and left-hand limits
must agree for the limit to exist. We could approach a from a− δ or from a+ δ. In the context of
multivariable limits, it’s much more complex than that. There are more than two possible directions
to approach a from.

We have the imprecise, or rough definition* of a limit for a function in two variables:

A function f(x, y) of two variables has a limit L as P (x, y) approaches a fixed point P0(a, b) if

|f(x, y)− L| < ε

can be made arbitrary small by forcing the point P (x, y) to be sufficiently close to the point
P0(a, b) ∈ D. If such a limit exists, we write

lim
(x,y)→(a,b)

f(x, y) = lim
P (x,y)→P0(a,b)

f(x, y) = L.

*A more rigorous definition that holds up to formal proofs would require real analysis.

In other words, for the multivariable function f(x, y), we say that

lim
(x,y)→(a,b)

f(x, y) = L

if and only if f(x, y) gets sufficiently close to L as (x, y) gets sufficiently close to (a, b).

How do we define sufficiently close enough? We begin with the distance formula:

√
(x− a)2 + (y − b)2 < δ

The point (x, y) lies inside a circle of radius δ centered at (a, b). In R2, we interpret “sufficiently
close” as being within an open disk (also called a neighborhood) around the point (a, b). Geo-
metrically, instead of approaching along a line from the left or right as in single-variable calculus,
we allow (x, y) to approach (a, b) from any direction within this disk. Note that a disk with the
neighborhood boundary included is called a closet set.

This behavior is known as path independence. Given that the requirements hold, the limit
lim(x,y)→(a,b) f(x, y) = L exists regardless of the path we take towards (a, b).
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There are an infinite number of directions from which we can approach (a, b).

f maps all the points in the neighborhood, denoted by an orange circle of radius δ, around (a, b) ⊂ D
except (a, b) into the interval (L− ε, L+ ε).
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Limit Laws for Functions of Two Variables

Let f(x, y) and g(x, y) be defined for all (x, y) ̸= (a, b) on a neighborhood around (a, b) and
suppose

lim
(x,y)→(a,b)

f(x, y) = L and lim
(x,y)→(a,b)

g(x, y) = M,

where L,M ∈ R and c ∈ R is a constant. Then the following rules apply:

Constant Law:

lim
(x,y)→(a,b)

c = c

Identity Laws:

lim
(x,y)→(a,b)

x = a

lim
(x,y)→(a,b)

y = b

Sum Rule:

lim
(x,y)→(a,b)

[f(x, y) + g(x, y)] = L+M
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Limit Laws for Functions of Two Variables (CONTINUED)

Difference Rule:

lim
(x,y)→(a,b)

[f(x, y)− g(x, y)] = L−M

Constant Multiple Rule:

lim
(x,y)→(a,b)

[c · f(x, y)] = cL

Product Rule:

lim
(x,y)→(a,b)

[f(x, y) · g(x, y)] = LM

Quotient Rule:

lim
(x,y)→(a,b)

f(x, y)

g(x, y)
=

L

M
if M ̸= 0

Power Rule:

lim
(x,y)→(a,b)

[f(x, y)]n = Ln for any integer n

Root Rule:

lim
(x,y)→(a,b)

n
√
f(x, y) =

n
√
L

for all L if n is odd and positive, and for all L ≥ 0 if n is even and positive.
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EXAMPLE 4.5

Evaluate the limit

lim
(x,y)→(2,8)

(
3x2y +

√
xy
)
.

Solution:

We apply the limit laws by splitting the expression into two separate limits:

lim
(x,y)→(2,8)

(
3x2y +

√
xy
)
= lim

(x,y)→(2,8)

(
3x2y

)
+ lim

(x,y)→(2,8)

√
xy

Using the constant multiple law, we pull out the 3:

= 3 · lim
(x,y)→(2,8)

(x2y) + lim
(x,y)→(2,8)

√
xy

Now plug in x = 2, y = 8:

= 3 · (22 · 8) +
√
2 · 8 = 3 · (4 · 8) +

√
16

= 3 · 32 + 4 = 96 + 4 = 100

There are cases where limits cannot be computed by direct substitution or may not exist at all.

Two-Path Test for Nonexistence of a Limit

If the multivariable function f(x, y) approaches two different values as the input point (x, y)
approaches (a, b) along two different paths in the domain of f , then the limit

lim
(x,y)→(a,b)

f(x, y)

does not exist.
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As soon as you find two paths that disagree, you can conclude that the limit does not exist. There
are five easy paths you may want to look at first:

1. (x, b) → (a, b) which is along the y = b line

2. (a, y) → (a, b) which is along the x = a line

3. (x, y) → (a, b) which is along any line with slope m such that y = m(x− a) + b

4. (x, y) → (a, b) which is along a parabola in x through point (a, b) with y = (x− a)2 + b

5. (x, y) → (a, b) which is along a parabola in y through point (a, b) with x = (y − b)2 + a

EXAMPLE 4.6

Show that the limit

lim
(x,y)→(0,0)

x2 − y2

x2 + y2

does not exist.

Solution:

Path 1: Let y = b = 0. Then

lim
(x,0)→(0,0)

x2 − 0

x2 + 0
= lim

x→0

x2

x2
= 1

Path 2: Let x = 0. Then

lim
(0,y)→(0,0)

=
x2 − y2

x2 + y2
= lim

y→0

−y2

y2
= −1

Since 1 ̸= −1, the limit does not approach a single value. Thus, by the two-path test,

lim
(x,y)→(0,0)

x2 − y2

x2 + y2
does not exist.
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EXAMPLE 4.7

Let f(x, y) = xy2

x2+y4 . Does

lim
(x,y)→(0,0)

f(x, y)

exist?

Solution:

Be careful because the numerator and denominator both go to zero at the origin.

Path 1: Let y = mx arbitrarily. Then

lim
(x,mx)→(0,0)

x · (mx)2

x2 + (mx)4
= lim

x→0

m2 · x3

x2 +m4 · x4
= lim

x→0

x2

x2
· m2 · x
1 +m4x2

= 0

Path 2: Let x = 0. Then

lim
(x,y)→(0,0)

xy2

x2 + y4
= lim

y→0

0 · y2

02 + y4
= lim

y→0

0

y4
= 0

So far, both paths give 0. But that isn’t sufficient to prove the limit exists. Let’s try a more
general curve.

Path 3: Let x = y2, which curves into the origin:

lim
(y2,y)→(0,0)

y2 · y2

(y2)2 + y4
= lim

y→0

y4

y4 + y4
= lim

y→0

y4

2y4
=

1

2

Since 0 ̸= 1
2 , the limit does not approach a single value. Thus, by the two-path test,

lim
(x,y)→(0,0)

xy2

x2 + y4
does not exist.

Rightfully, you may be wondering: what happens if you perform several paths for a variety of values
and get the same value every time? Well, you might think that this means the limit exists. In
reality, the best you can say is that it likely exists. There are infinitely many paths to approach
a point and it’s impossible to check every single one. You can try are rewriting the limit in polar
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coordinates and using the squeeze theorem. Ideally, you’ll discover that the limit does not exist
before having to resort to that which is generally much easier than proving a limit exists.

The same conditions for a single-variable function being continuous must be met for a function of
two variables. Let’s take a look at that before we move on to a formal definition:

Conditions for Continuity of a Function of Two Variables

A function f(x, y) is continuous at a point (a, b) in its domain if all of the following are true:

1. f(a, b) exists.

2. lim
(x,y)→(a,b)

f(x, y) exists.

3. lim
(x,y)→(a,b)

f(x, y) = f(a, b).

EXAMPLE 4.8

Show that the function f(x, y) = 3x+2y
x+y+1 is continuous at the point (5,−3).

Solution:

1. Does f(5,−3) exist?

f(5,−3) =
3(5) + 2(−3)

5 + (−3) + 1
=

15− 6

3
=

9

3
= 3

2. Does the limit exist?

Since f(x, y) is a rational function and the denominator is nonzero at (5,−3), the
function is continuous wherever it is defined. Additionally,

lim
(x,y)→(5,−3)

f(x, y) = 3 = f(5,−3).

3. Are the function value and the limit equal? As seen previously, they are equal.

All three conditions are satisfied therefore the function is continuous at (5,−3).
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Here is the formal definition:

Continuity of a Function of Two Variables

A function f(x, y) is continuous at a point (x0, y0) in an open region R ⊆ R2 if the following
is true:

lim
(x,y)→(x0,y0)

f(x, y) = f(x0, y0)

We say f is continuous on R if it is continuous at every point (x0, y0) ∈ R.

When we say a function is continuous, what we mean is that small changes in (x, y) translate to
small changes in f(x, y). This means that things like jumps and holes are absent; the graph should
be smooth. If you build one large function using continuous terms, it follows that the new function
will also be continuous. This is why polynomials are always continuous. A polynomial is simply a
sum of terms of the form cxmyn where c is a constant, m ≤ 0, and n ≤ 0. It’s simply a sum of
continuous things.

The Sum of Continuous Functions is Continuous

If f(x, y) is continuous at (x0, y0) and g(x, y) is continuous at (x0, y0), then the sum f(x, y) +
g(x, y) is also continuous at (x0, y0).

The Product of Continuous Functions is Continuous

If g(x) is continuous at x0 and h(y) is continuous at y0, then the function f(x, y) = g(x)h(y)
is continuous at (x0, y0).

Continuity of a Composite Function

Let g be a function of two variables with domain D ⊆ R2 and range R ⊆ R. Suppose g is
continuous at some point (x0, y0) ∈ D and let z0 = g(x0, y0).

Let f be a function that maps R → R such that z0 is in the domain of f , and suppose f is
continuous at z0. Assume f is continuous at z0.

Then, the composition f ◦ g is continuous at (x0, y0).
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EXAMPLE 4.9

Show that the functions f(x, y) = 4x3y2 and g(x, y) = cos(4x3y2) are continuous everywhere.

Solution:

The function f(x, y) = 4x3y2 is a polynomial with two polynomial terms, and polynomials
are continuous at every point in R2. Therefore, as f(x) represents a product of two
continuous functions, it is continuous everywhere.

Notice that g(x, y) = cos(f(x, y)), which means we are just applying the cosine function to
the output of f . cosx is continuous at every real number and we have already established
that f(x, y) is continuous at every point (x, y) in the xy-plane. Thus, as we are composing
two continuous functions, g(x, y) is continuous at every point (x, y) in the xy-plane.

When it comes to taking the limit of functions of three or more variables, we have to extend our
disk of radius δ into more than two dimensions.

Continuity of a Function of Three Variables

A function f(x, y, z) is continuous at a point (x0, y0, z0) in an open region R ⊆ R3 if the
following is true:

lim
(x,y,z)→(x0,y0,z0)

f(x, y, z) = f(x0, y0, z0)

The function f is continuous on R if it is continuous at every point (x0, y0, z0) ∈ R.

We will now reestablish our ”sufficiently close” criteria. Let f(x, y, z) be a function defined on a
domain D in R3, and suppose we are interested in

lim
(x,y,z)→(a,b,c)

f(x, y, z) = L

The distance between the point (x, y, z) and (a, b, c) is given by

√
(x− a)2 + (y − b)2 + (z − c)2.

If for every number ε > 0, there exists a number δ > 0 such that (x, y, z) ∈ D and 0 <√
(x− a)2 + (y − b)2 + (z − c)2 < δ, then

|f(x, y, z)− L| < ε.
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We extend the idea of the disk to a ball.

Let point (x0, y0, z0) ∈ R3. A ball centered at (x0, y0, z0) with radius δ in three dimensions consists
of all points in R3 that are less than distance δ away from (x0, y0, z0). That is,

{
(x, y, z) ∈ R3

∣∣∣√(x− x0)2 + (y − y0)2 + (z − z0)2 < δ
}
.

To define a ball in higher dimensions, simply add terms under the radical corresponding to each
additional coordinate. For example, given a point

P = (w0, x0, y0, z0) ∈ R4,

a ball centered at P is

{
(w, x, y, z) ∈ R4

∣∣∣√(w − w0)2 + (x− x0)2 + (y − y0)2 + (z − z0)2 < δ
}
.

All the limit rules for functions of two variables work for functions of three or more variables.

4.4 Partial Derivatives

For single-variable functions, we write the derivative as y′ which represents the instantaneous rate
of change of y as a function of x. In Leibniz notation, we write that as dy

dx . For a function of two
variables z = f(x, y) which has two independent variables x and y and a dependent variable z,
what does Leibniz notation look like? We use the symbol partial ∂:

Let f(x, y) be a function of two variables. Then, the partial derivative of f with respect to
x, written as ∂f

∂x or fx, is defined as

∂f

∂x
= fx(x, y) = lim

h→0

f(x+ h, y)− f(x, y)

h
.

The partial derivative of f with respect to y, written as ∂f
∂y or fy, is defined as

∂f

∂y
= fy(x, y) = lim

k→0

f(x, y + k)− f(x, y)

k
.
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Secant line passing through the points (x, y, f(x, y)) and (x+ h, y, f(x+ h, y))

There are many alternative notations for partial derivatives.

Just remember that to find fx, you regard y as a constant and differentiate f(x, y) with respect to
x. And to find fy, you regard x as a constant and differentiate f(x, y) with respect to y.

EXAMPLE 4.10

Use the definition of the partial derivative to compute ∂f
∂x and ∂f

∂y for the function

f(x, y) = x2 − 3xy + 2y2 − 4x+ 5y − 12.

Solution:

We are computing ∂f
∂x first. We begin by calculating f(x + h, y) = x2 + 2xh + h2 − 3xy −

3hy + 2y2 − 4x− 4h+ 5y − 12. Then we plug it in and simplify to get this:

∂f

∂x
= lim

h→0

h(2x+ h− 3y − 4)

h
= lim

h→0
(2x+ h− 3y − 4) = 2x− 3y − 4

Now we compute ∂f
∂y . We compute f(x, y + h) = x2 − 3xy − 3xh+ 2y2 + 4yh+ 2h2 − 4x+

5y + 5h− 12. Then we plug it in and simplify to get this:

∂f

∂y
= lim

h→0

h(−3x+ 4y + 2h+ 5)

h
= lim

h→0
(−3x+ 4y + 2h+ 5) = −3x+ 4y + 5
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EXAMPLE 4.11

Let f(x, y) = x3 + x2y3 − 2y2. Find fx(2, 1) and fy(2, 1).

Solution:

We differentiate with respect to x and hold y constant:

fx(x, y) =
∂

∂x

(
x3 + x2y3 − 2y2

)
= 3x2 + 2xy3 ⇒ fx(2, 1) = 3 · 22 + 2 · 2 · 13 = 12 + 4 = 16

We differentiate with respect to y and hold x constant:

fy(x, y) =
∂

∂y

(
x3 + x2y3 − 2y2

)
= 3x2y2 − 4y ⇒ fy(2, 1) = 3 · 22 · 12 − 4 · 1 = 12− 4 = 8

Now, we will think about how to geometrically interpret partial derivatives.

Let z = f(x, y) represent a surface S in R3. The point P = (a, b, c), given that c = f(a, b), lies on
this surface.

If we fix y = b, this slices the surface with a vertical plane parallel to the xz-plane. The intersection
curve is C1, and it traces the function g(x) = f(x, b). The slope of the tangent line T1 to this curve
at point P is fx(a, b).

If we fix x = a, this slices the surface with a vertical plane parallel to the yz-plane. The intersection
curve is C2, and it traces the function g(y) = f(a, y). The slope of the tangent line T2 to this curve
at point P is fy(a, b).

Thus, the partial derivatives fx(a, b) and fy(a, b) can be viewed as the slopes of tangent lines to
these vertical traces of the surface in the planes y = b and x = a, respectively.

We now move onward to a function of three variables such as w = f(x, y, z):
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Let f(x, y, z) be a function of three variables. Then, the partial derivative of f with respect
to x, written as ∂f

∂x , or fx, is defined to be

∂f

∂x
= fx(x, y, z) = lim

h→0

f(x+ h, y, z)− f(x, y, z)

h
.

The partial derivative of f with respect to y, written as ∂f
∂y , or fy, is defined to be

∂f

∂y
= fy(x, y, z) = lim

k→0

f(x, y + k, z)− f(x, y, z)

k
.

The partial derivative of f with respect to z, written as ∂f
∂z , or fz, is defined to be

∂f

∂z
= fz(x, y, z) = lim

m→0

f(x, y, z +m)− f(x, y, z)

m
.

When we want to calculate a partial derivative of a function of three variables, we use the same
idea as we did for a function of two variables: we treat the other two independent variables as if
they are constants and then differentiate with respect to whichever variable we are focusing on.

In general, if w = f(x1, x2, . . . , xn), there are n partial derivatives denoted by

∂w

∂xk
= fxk

(x1, x2, . . . , xn),

where k = 1, 2, . . . , n.
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EXAMPLE 4.12

Let f(x, y, z) = exy ln z. Compute the partial derivatives fx, fy, and fz.

Solution:

We first take the partial derivative with respect to x, holding y and z constant:

fx =
∂

∂x
(exy ln z) =

(
∂

∂x
exy
)
· ln z = yexy ln z

We then take the partial derivative with respect to y, holding x and z constant:

fy =
∂

∂y
(exy ln z) = xexy ln z

We then take the partial derivative with respect to z, holding x and y constant:

fz =
∂

∂z
(exy ln z) = exy · 1

z
=

exy

z

Let’s now move on to higher derivatives. Take a look at the following table of second partial deriva-
tives:

Leibniz Notation Subscript Notation Pronunciation

∂

∂x

(
∂f

∂x

)
=

∂2f

∂x2
(fx)x = fxx “d squared f over d x squared” or “f sub x x”

∂

∂y

(
∂f

∂y

)
=

∂2f

∂y2
(fy)y = fyy “d squared f over d y squared” or “f sub y y”

∂

∂x

(
∂f

∂y

)
=

∂2f

∂x∂y
(fy)x = fyx “d squared f over d x d y” or “f sub y x”

∂

∂y

(
∂f

∂x

)
=

∂2f

∂y∂x
(fx)y = fxy “d squared f over d y d x” or “f sub x y”

Higher-Order Partial Derivative Notation and Pronunciation
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Graphs of f(x, y) = sin(xy), ∂f
∂x , and

∂2f
∂x2

EXAMPLE 4.12

Find the second partial derivatives of the function f(x, y) = x3 + x2y3 − 2y2 using the first
partial derivatives we already found:

fx(x, y) = 3x2 + 2xy3

fy(x, y) = 3x2y2 − 4y

Solution:

We compute the second partials with respect to the same variable:

fxx =
∂

∂x
(3x2 + 2xy3) = 6x+ 2y3

fyy =
∂

∂y
(3x2y2 − 4y) = 6x2y − 4

Now we compute the mixed partials. For fxy we differentiate with respect to x first and
then with respect to y and vice-versa for fyx:

fxy =
∂

∂y
(3x2 + 2xy3) = 6xy2

fyx =
∂

∂x
(3x2y2 − 4y) = 6xy2
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You may have noticed that fxy = fyx. Is this a coincidence? Let’s test this using the general
polynomial term xmyn:

∂2

∂x∂y
(xmyn) =

∂

∂x

(
∂

∂y
(xmyn)

)
=

∂

∂x
(nxmyn−1) = mnxm−1yn−1

∂2

∂y∂x
(xmyn) =

∂

∂y

(
∂

∂x
(xmyn)

)
=

∂

∂y
(mxm−1yn) = mnxm−1yn−1

It looks like it’s not a coincidence after all.

Clairaut’s Theorem: Assume that f(x, y) is a multivariable function with domain D ⊆ R2.
Suppose that fxy and fyx are continuous throughout D. Then, for all points in D, we have

fxy(x, y) =
∂

∂y

[
∂

∂x
[f(x, y)]

]
=

∂

∂x

[
∂

∂y
[f(x, y)]

]
= fyx(x, y).

In other words, if two functions are nice enough with continuous second mixed partial derivatives
in some region around a point, the order in which you take partial derivatives doesn’t matter. Now
keep in mind that this is only true for most functions. Clairaut’s theorem also holds true for any
order of partial derivatives as long as they are continuous. For instance, assuming f has continuous
third partial derivatives, then

fxyz = fxzy = fyzx = fzxy = fzyx.

Let’s talk about differentiability.

Suppose a multivariable function f(x, y) has partial derivatives fx and fy defined on an open set
containing the point (a, b), and both of these partial derivatives are continuous at that point. Then,
f is differentiable at (a, b).

Moreover, if a function f(x, y) is differentiable at a point (a, b), then it is also continuous at that
point.

Continuity of the partial derivatives implies differentiability. And differentiability implies continu-
ity. However, the reverse implications do not hold. A function can be continuous without being
differentiable, and it can have partial derivatives without being continuous.

https://rhoclouds.github.io


https://rhoclouds.github.io 192

EXAMPLE 4.13

In a study of frost penetration, it was found that the temperature T at time t (in days)
and depth x (in feet) is modeled by the function T (x, t) = T0 + T1e

−λx sin(ωt − λx) where
ω = 2π

365 and λ is a positive constant.

(a) Find ∂T
∂x . What is its physical significance?

(b) Find ∂T
∂t . What is its physical significance?

Solution:

(a)

∂T

∂x
=

d

dx

[
T0 + T1e

−λx sin(ωt− λx)
]

= T1 ·
d

dx

(
e−λx sin(ωt− λx)

)
= T1

[
d

dx
(e−λx) · sin(ωt− λx) + e−λx · d

dx
(sin(ωt− λx))

]
= T1

[
(−λe−λx) · sin(ωt− λx) + e−λx · (−λ cos(ωt− λx))

]
= −λT1e

−λx [sin(ωt− λx) + cos(ωt− λx)]

This measures the rate of change of temperature with respect to depth at time t. Because
of the exponential decay, the oscillations in temperature get weaker as depth increases.

(b)

∂T

∂t
=

d

dt

[
T0 + T1e

−λx sin(ωt− λx)
]

= T1e
−λx · d

dt
(sin(ωt− λx))

= T1e
−λx · ω cos(ωt− λx)

This measures the rate of change of temperature with respect to time at depth x. The cosine
function reflects seasonal fluctuations in temperature and the amplitude again decreases with
depth.
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EXAMPLE 4.14

Express the volume of a right circular cylinder as a function V of two variables.

(a) Express it as a function of its radius r and height h.

(b) Show that the rate of change of the volume of the cylinder with respect to its radius is
the product of its circumference multiplied by its height.

(c) Show that the rate of change of the volume of the cylinder with respect to its height is
equal to the area of the circular base.

Solution:

(a) V (r, h) = πr2h

(b) Find the partial derivative of V with respect to r:

∂V

∂r
=

∂

∂r
(πr2h) = 2πrh

This is the rate of change of volume with respect to radius. This shows that we are multi-
plying circumference 2πr by height h.

(c) Find the partial derivative of V with respect to h:

∂V

∂h
=

∂

∂h
(πr2h) = πr2

This is the rate of change of volume with respect to height and gives us area πr2.

4.5 Chain Rule

The chain rule is likely one of the most powerful tools you used in single-variable calculus. Recall
that it is written as

d

dx
[f(g(x))] = f ′(g(x)) · g′(x).

We will now generalize the chain rule to multivariable functions. We begin where x and y are
functions of one variable:
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Let z = f(x, y) be a differentiable function where x = g(t) and y = h(t) are both differentiable
functions of t. Then z is a differentiable function of t, and we have

dz

dt
=

∂f

∂x
· dx
dt

+
∂f

∂y
· dy
dt

EXAMPLE 4.15

Let z = x2y + 3xy4 where x(t) = sin(2t) and y(t) = cos(t). Find
dz

dt
when t = 0.

Solution:

We will often write the chain rule like this:

dz

dt
=

∂z

∂x
· dx
dt

+
∂z

∂y
· dy
dt

Let’s compute:

dz

dt
=
(
2xy + 3y4

)
(2 cos(2t)) +

(
x2 + 12xy3

)
(− sin(t))

At t = 0, we have x(0) = sin(0) = 0 and y(0) = cos(0) = 1.
Evaluating yields

dz

dt

∣∣∣∣
t=0

= (2(0)(1) + 3(1))(2 cos(0)) + ((0)2 + 12(0)(1)3)(− sin(0))

= 3 · 2 + 0 = 6

We now move on to the chain rule where x and y are functions of two variables:

Let z = f(x, y) be a differentiable function of x and y, where x = g(s, t) and y = h(s, t) are
both differentiable functions of s and t. Then z is a differentiable function of s and t, and we
have

∂z

∂s
=

∂z

∂x
· ∂x
∂s

+
∂z

∂y
· ∂y
∂s

.
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EXAMPLE 4.16

Let z = ex sin y where x = st2 and y = s2t. Find
∂z

∂s
and

∂z

∂t
.

Solution:

We have z = f(x, y) where x and y depend on s and t:

∂z

∂s
=

∂z

∂x
· ∂x
∂s

+
∂z

∂y
· ∂y
∂s

= (ex sin y) (t2) + (ex cos y) (2st)

= t2est
2

sin(s2t) + 2stest
2

cos(s2t)

∂z

∂t
=

∂z

∂x
· ∂x
∂t

+
∂z

∂y
· ∂y
∂t

= (ex sin y) (2st) + (ex cos y) (s2)

= 2stest
2

sin(s2t) + s2est
2

cos(s2t)

One method to remember and visualize the chain rule is through tree diagrams. We start by
branching out from the z, the dependent variable. After that, we have x and y, the intermediate
variables. This tells us that z is a function of x and y. Then, we branch out to s and t, the
independent variables. The branches contain the partial derivative of the variable on the node it
comes from with respect to the variable on the node it leads to.

z

x y

s t s t

∂z
∂x

∂z
∂y

∂x
∂s

∂x
∂t

∂y
∂s

∂y
∂t

If you wanted to find ∂z
∂s , you have to follow two paths to s. For the first, you go from z to x to

s and multiply together any partial derivatives you pass on the way. For the second, you go from
z to y to s and multiply together any partial derivatives you pass on the way. Then, you add the
two paths together.
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Let’s now look at the general version of the chain rule:

Suppose that u is a differentiable function of the n variables

x1, x2, . . . , xn,

where each xj is a differentiable function of the m variables

t1, t2, . . . , tm.

That is, we have functions u = f(x1, x2, ..., xn) and xi = gi(t1, t2, ..., tm).

Then u is a function of t1, t2, . . . , tm, and for each i = 1, 2, . . . ,m, we have

∂u

∂ti
=

∂u

∂x1
· ∂x1

∂ti
+

∂u

∂x2
· ∂x2

∂ti
+ · · ·+ ∂u

∂xn
· ∂xn

∂ti
=

n∑
j=1

∂u

∂xj
· ∂xj

∂ti
.
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EXAMPLE 4.17

Suppose w = f(x, y, z, t) where x = x(u, v), y = y(u, v), z = z(u, v), and t = t(u, v). Draw
the corresponding tree diagram and write out the expressions for the chain rule.

Solution:

Here is the corresponding tree diagram:

w

x y z t

u v u v u v u v

Using the tree diagram, we can easily acquire the chain rule expressions. For n = 4 and
m = 2, we have the following:

∂w

∂u
=

∂w

∂x
· ∂x
∂u

+
∂w

∂y
· ∂y
∂u

+
∂w

∂z
· ∂z
∂u

+
∂w

∂t
· ∂t
∂u

∂w

∂v
=

∂w

∂x
· ∂x
∂v

+
∂w

∂y
· ∂y
∂v

+
∂w

∂z
· ∂z
∂v

+
∂w

∂t
· ∂t
∂v
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EXAMPLE 4.18

Suppose u = x4y+ y2z3 where x = rset, y = rs2e−t, and z = r2s sin t. Find the value of ∂u
∂s

when r = 2, s = 1, and t = 0. Draw a tree diagram to help you.

Solution:

Here is the corresponding tree diagram:

u

x y z

r s t r s t r s t

With the help of the tree diagram, we apply the chain rule:

∂u

∂s
=

∂u

∂x
· ∂x
∂s

+
∂u

∂y
· ∂y
∂s

+
∂u

∂z
· ∂z
∂s

Now we compute:

∂u

∂s
= (4x3y)(ret) + (x4 + 2yz3)(2rse−t) + (3y2z2)(r2 sin t)

At r = 2, s = 1, and t = 0, we find

x = rset = 2 · 1 · 1 = 2

y = rs2e−t = 2 · 12 · 1 = 2

z = r2s sin t = 4 · 1 · 0 = 0

Now we plug them in:

∂u

∂s
= (4 · 8 · 2)(2 · 1) + (16 + 2 · 2 · 0)(2 · 2 · 1) + (3 · 4 · 0)(4 · 0)

= (64)(2) + (16)(4) + (0)(0) = 192
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In single-variable calculus, you used the chain rule to perform implicit differentiation, which is
a method for finding dy

dx when y is defined implicitly as a function of x. For instance, let’s say we
want to differentiate x2 + y2 = 1. As you can see, y is not isolated; it’s not an explicit function of
x. We would have to implicitly differentiate:

d

dx
(x2 + y2) =

d

dx
(1)

2x+ 2y · dy
dx

= 0

dy

dx
= −x

y

You may think: why don’t we just isolate the y? Well, we could have there. It just would have
been a lot more difficult. We will now extend implicit differentiation to multivariable calculus:

Let the function F be differentiable on its domain and suppose F (x, y) = 0 defines y as a
function of x. If Fy ̸= 0, then

dy

dx
= −∂F/∂x

∂F/∂y
= −Fx

Fy
.

Under the same conditions, for the function F (x, y, z) = 0, we have the following:

∂z

∂x
= −∂F/∂x

∂F/∂z
= −Fx

Fz

∂z

∂y
= −∂F/∂y

∂F/∂z
= −Fy

Fz

Let’s show how we used the chain rule to find ∂z
∂x and ∂z

∂y .

Suppose that z is given implicitly as a function z = f(x, y) by an equation of the form F (x, y, z) = 0.
This means that

F (x, y, f(x, y)) = 0

for all (x, y) ∈ D where D is the domain of f . If F and f are differentiable, then we can use the
chain rule to differentiate the equation F (x, y, z) = 0 as follows:

∂F

∂x
· ∂x
∂x

+
∂F

∂y
· ∂y
∂x

+
∂F

∂z
· ∂z
∂x

= 0
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Because ∂
∂x (x) = 1 and ∂

∂x (y) = 0, the equation becomes

∂F

∂x
+

∂F

∂z
· ∂z
∂x

= 0

If ∂F
∂z ̸= 0, we solve for ∂z

∂x and obtain ∂z
∂x = −∂F/∂x

∂F/∂z . The formula for ∂z
∂y is obtained in a similar

manner:

∂F

∂x
· ∂x
∂y

+
∂F

∂y
· ∂y
∂y

+
∂F

∂z
· ∂z
∂y

= 0

0 +
∂F

∂y
+

∂F

∂z
· ∂z
∂y

= 0

∂z

∂y
= −∂F/∂y

∂F/∂z

EXAMPLE 4.19

Find
∂z

∂x
and

∂z

∂y
if F (x, y, z) = x3 + y3 + z3 + 6xyz = 1.

Solution:

We will z be defined implicitly as a function of x and y:

∂z

∂x
= −Fx

Fz
= −3x2 + 6yz

3z2 + 6xy
= −x2 + 2yz

z2 + 2xy

∂z

∂y
= −Fy

Fz
= −3y2 + 6xz

3z2 + 6xy
= −y2 + 2xz

z2 + 2xy
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EXAMPLE 4.20

Wheat production W in a given year depends on the average temperature T and the annual
rainfall R. Scientists estimate that the average temperature in the agricultural region of a
country is rising at a rate of 0.15°C/year and rainfall is decreasing at a rate of 0.1 cm/year.
They also estimate that, at current production levels, ∂W/∂T = −2 and ∂W/∂T = 8.

(a) What is the significance of the signs of these partial derivatives?
(b) Estimate the current rate of change of wheat production dW/dt.

Solution:

(a) The negative sign of ∂W/∂T means that as temperature increases, wheat production
decreases assuming that annual rainfall remains constant. Conversely, the positive sign
of ∂W/∂T indicates that more rainfall increases wheat production assuming that average
temperature remains constant.

(b) We have temperature rate dT/dt = 0.15 and rainfall rate dR/dt = −0.1. Since W =
f(T,R) and both T and R depend on time t, we apply the chain rule:

dW

dt
=

∂W

∂T
· dT
dt

+
∂W

∂R
· dR
dt

= (−2)(0.15) + (8)(−0.1) = −0.3− 0.8 = −1.1.

Wheat production is currently decreasing at a rate of 1.1 units per year.

5 Applications of Multivariable Differentiation

5.1 Tangent Planes and Linear Approximations

In single-variable calculus, you used the second derivative test to search for local minimums and
maximums. You did this by finding where the slope of the tangent line to curves was equal to zero.
You could also zoom in towards a point on a graph and approximate the function. Here, we will
develop the same idea for multivariable calculus, where we can zoom in on a point on a surface and
find a tangent plane. We begin with the geometric definition of a tangent plane:

Let P0 = (x0, y0, z0) be a point on a surface S and let C ⊂ S be a curve lying entirely that
passes through P0. If the tangent lines to any C at P0 lie in the same plane, then we call
this the tangent plane to the S at P0. The tangent plane at P0 is the plane that most closely
approximates the surface near the P0.
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The tangent plane to S at P0. Image credit: Strang & Herman

The tangent plane to z = cosx+ sin y at P
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The equation of a plane passing through the point P (x0, y0, z0) can be written as

A(x− x0) +B(y − y0) + C(z − z0) = 0.

If we divide everything by C and let a = −A/C and b = −B/C, we can rewrite it as

z − z0 = a(x− xa) + b(y − y0),

which represents the tangent plane at P . Thus, its intersection with the plane y = y0 must be the
tangent line T1. If we plug y0 into the equation for the tangent plane, we get

z − z0 = a(x− x0),

where y = y0. This is the point-slope form of a line with slope a = fx(x0, y0). For the tangent line
T2, we substitute x = x0 into the equation of the tangent plane to get

z − z0 = b(y − y0)

where slope b = fy(x0, y0). Putting everything together, we get the equation of a tangent plane:

Suppose the function f has continuous partial derivatives. An equation of the tangent plane
to the surface z = f(x, y) at the point P (x0, y0, z0) is

z − z0 = fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0).
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EXAMPLE 5.1

Determine the tangent plane to the graph of f(x, y) = x3 + y2 + 2x at the point
(−1, 2, f(−1, 2)).

Solution:

We first compute the partial derivatives:

∂f

∂x
= fx = 3x2 + 2

∂f

∂y
= fy = 2y

We evaluate them at the point (−1, 2):

fx
∣∣
(−1,2)

= 3(−1)2 + 2 = 5

fy
∣∣
(−1,2)

= 2(2) = 4.

The value of the function at this point is

f(−1, 2) = (−1)3 + 22 + 2(−1) = −1 + 4− 2 = 1.

So the equation of the tangent plane is

z = f(−1, 2) + fx(−1, 2)(x+ 1) + fy(−1, 2)(y − 2) = 1 + 5(x+ 1) + 4(y − 2)

z = 5x+ 4y − 2.

We can also write out the equation of a tangent plane in vector form. Consider a surface S defined
by the function F (x, y, z) = 0 and let point P = (x0, y0, z0) ∈ S. Suppose C ⊂ S is a curve that
passes through P , defined by a vector-valued function

r⃗(t) = ⟨x(t), y(t), z(t)⟩
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such that F (x(t), y(t), z(t)) = 0 for all t.

Differentiating both sides with respect to t using the chain rule, we obtain

d

dt
F (x(t), y(t), z(t)) = Fx x

′(t) + Fy y
′(t) + Fz z

′(t) = ∇F · r⃗ ′(t) = 0.

We evaluate at P = (x0, y0, z0) and this becomes

∇F (x0, y0, z0) · r⃗ ′(t0) = 0,

where ∇F (x0, y0, z0) is the gradient and r⃗ ′(t) is the tangent vector. The gradient at P is orthogonal
to the tangent vector of every curve on the surface through P . Therefore, the tangent plane to the
surface at P is the plane through P that is perpendicular to the gradient. We have

∇F (x0, y0, z0) · ⟨x− x0, y − y0, z − z0⟩ = 0.

Writing this out in component form yields

⟨Fx(x0, y0, z0), Fy(x0, y0, z0), Fz(x0, y0, z0)⟩ · ⟨x− x0, y − y0, z − z0⟩ = 0,

and simplifying gives the scalar equation of the tangent plane:

Fx(x0, y0, z0)(x− x0) + Fy(x0, y0, z0)(y − y0) + Fz(x0, y0, z0)(z − z0) = 0.

This is another approach to thinking about tangent planes that ultimately leads to the same result.
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EXAMPLE 5.2

We have the ellipsoid F (x, y, z) = x2

9 + y2

25 + z2 − 1 = 0.

(a) Find the equation for the tangent plane at P = (0, 4, 3
5 ).

(b) Find any points on the ellipsoid with a horizontal tangent plane.
(c) Graph parts (a) and (b).

Solution:

We verify that the point lies on the surface:

F (0, 4, 3
5 ) =

02

9
+

42

25
+

(
3

5

)2

− 1 = 0.

We compute the gradient of F :

∇F (x, y, z) =

〈
2x

9
,
2y

25
, 2z

〉

∇F (0, 4, 3
5 ) =

〈
0,

8

25
,
6

5

〉

We compute the equation of the tangent plane:

0 = ∇F (a, b, c) · ⟨x− 0, y − 4, z − 3

5
⟩ = 0 · (x− 0) +

8

25
(y − 4) +

6

5

(
z − 3

5

)
8

25
y +

6

5
z − 2 = 0
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EXAMPLE 5.2 (CONTINUED)

(b) A tangent plane is horizontal if the normal vector to the tangent plane points in the
z-direction. That is,

∇F (x, y, z) = c · ⟨0, 0, 1⟩

for some scalar multiple c ∈ R. We then have

〈
2x

9
,
2y

25
, 2z

〉
= ⟨0, 0, c⟩

2x

9
= 0 ⇒ x = 0

2y

25
= 0 ⇒ y = 0

2x

9
= 0 ⇒ z =

c

2

We want to find points where (x, y, z) = (0, 0, z). Setting F (0, 0, z) = 0 and solving yields
z = ±1. Thus, the two points on the surface with a horizontal tangent plane are P1 = (0, 0, 1)
and P2 = (0, 0,−1). We will now find the tangent plane equation at P1 = (0, 0, 1):

∇F (0, 0, 1) · ⟨x− 0, y − 0, z − 1⟩ = ⟨0, 0, 2⟩ · ⟨x, y, z − 1⟩ = 2z − 2 = 0

At P2 = (0, 0,−1), we have 2z + 2 = 0.
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EXAMPLE 5.2 (CONTINUED)

(c) I have graphed both of the results. Please run the MATLAB code yourself and have a
look!!

Part (a) graph

ex5point2a.m

Part (b) graph

ex5point2b.m


F = (x.^2)/9 + (y.^2)/25 + z.^2 - 1;
[x, y, z] = meshgrid(linspace(-6, 6, 100));

figure; hold on;
p = patch(isosurface(x, y, z, F, 0));
isonormals(x, y, z, F, p)
set(p, 'FaceColor', [1 0.6 0.6], 'EdgeColor', 'none', 'FaceAlpha', 0.5)

% Point P
P = [0, 4, 3/5];
[xs, ys, zs] = sphere(50);
r = 0.3;
surf(r*xs + P(1), r*ys + P(2), r*zs + P(3), 'FaceColor', 'blue', 'EdgeColor', 'none')
text(P(1)+0.3, P(2)+0.3, P(3), '\it{P}', 'FontSize', 12, 'Color', 'k')

% Tangent plane
[xt, yt] = meshgrid(linspace(-2, 2, 30), linspace(2, 6, 30));
zt = (50 - 8*yt)/30;
surf(xt, yt, zt, 'FaceColor', [0.3 0.8 0.4], 'FaceAlpha', 0.6, 'EdgeColor', 'none')

xlabel('\it{x}')
ylabel('\it{y}')
zlabel('\it{z}')
axis([-6 6 -6 6 -6 6])
xticks(-6:2:6)
yticks(-6:2:6)
zticks(-6:2:6)
grid on
view(35, 30)
camlight
lighting gouraud



F = (x.^2)/9 + (y.^2)/25 + z.^2 - 1;
[x, y, z] = meshgrid(linspace(-6, 6, 100));

figure; hold on;
p = patch(isosurface(x, y, z, F, 0));
isonormals(x, y, z, F, p)
set(p, 'FaceColor', [1 0.6 0.6], 'EdgeColor', 'none', 'FaceAlpha', 0.5)

P1 = [0, 0, 1];
P2 = [0, 0, -1];

[xs, ys, zs] = sphere(50);
r = 0.3;

% (0, 0, 1)
surf(r*xs + P1(1), r*ys + P1(2), r*zs + P1(3), ...
    'FaceColor', 'blue', 'EdgeColor', 'none')
text(P1(1)+0.4, P1(2)+0.4, P1(3), 'P₁', 'FontSize', 12, 'Color', 'k')

% (0, 0, -1)
surf(r*xs + P2(1), r*ys + P2(2), r*zs + P2(3), ...
    'FaceColor', 'blue', 'EdgeColor', 'none')
text(P2(1)+0.4, P2(2)+0.4, P2(3), 'P₂', 'FontSize', 12, 'Color', 'k')

% Draw horizontal tangent planes (z = ±1)
[xp, yp] = meshgrid(linspace(-4, 4, 30));
z1 = ones(size(xp));
z2 = -ones(size(xp));
surf(xp, yp, z1, 'FaceColor', [0.2 0.8 0.2], 'FaceAlpha', 0.4, 'EdgeColor', 'none')
surf(xp, yp, z2, 'FaceColor', [0.2 0.8 0.2], 'FaceAlpha', 0.4, 'EdgeColor', 'none')

xlabel('\it{x}')
ylabel('\it{y}')
zlabel('\it{z}')
axis([-6 6 -6 6 -6 6])
xticks(-6:2:6)
yticks(-6:2:6)
zticks(-6:2:6)
grid on
view(35, 30)
camlight
lighting gouraud
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Let’s formalize the fact that tangent planes can also be used to approximate multivariable functions:

In general, we know that an equation of the tangent plane to the graph of a function f of two
variables at the point (a, b, f(a, b)) is

z = f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b).

The linear function that this graph represents,

L(x, y) = f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b),

is called the linearization of f at (a, b). The approximation

f(x, y) ≈ f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b)

is called the linear approximation of f at (a, b).

The idea is that if f is differentiable at (a, b), then for values of (x, y) close to (a, b), the tangent
plane gives a good estimate of the actual value of f(x, y). This is especially useful when evaluating
the exact function is difficult and the partial derivatives are easier to compute.

Recall how differentiability works in single-variable calculus. For a function y = f(x), the increment
of y as x changes from a to a+∆x is ∆y = f(a+∆x)− f(a). And if f is differentiable at a, then
∆y = f ′(a)∆x+ ε∆x where ε → 0 as ∆x → 0.

Now consider a function of two variables, z = f(x, y), and suppose x and y change from a, b to
(a+∆x, b+∆y). Then the increment of z is defined as

∆z = f(a+∆x, b+∆y)− f(a, b),

which represents the change in f as (a, b) → (a+∆x, b+∆y).
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This brings us to the definition of differentiability for functions of two variables. The idea remains
the same, which is that we are approximating the function by its linear portion and an error term:

If z = f(x, y), then f is differentiable at (a, b) if ∆z can be expressed in the form

∆z = fx(a, b)∆x+ fy(a, b)∆y + ε1∆x+ ε2∆y,

where ε1 → 0 and ε2 → 0 as (∆x, ∆y) → (0, 0).

That is, error ε1 and ε2 can become sufficiently small when (x, y) is near (a, b). This means that
the tangent plane should approximate the graph of f pretty accurately near the point of tangency.
However, it can be hard to use this definition in practice. Thus, we have a more convenient one:

If the partial derivatives fx and fy exist near (a, b) and are continuous at (a, b), then f is
differentiable at (a, b).
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EXAMPLE 5.3

Find the linear approximation of the function f(x, y, z) =
√
x2 + y2 + z2 at the point

(3, 2, 6), and use it to approximate
√
(3.02)2 + (1.97)2 + (5.99)2. Find the percent error.

Solution:

We want the linear approximation

f(x, y, z) ≈ f(a, b, c) + fx(a, b, c)(x− a) + fy(a, b, c)(y − b) + fz(a, b, c)(z − c),

where f(x, y, z) =
√
x2 + y2 + z2 and (a, b, c) = (3, 2, 6).

We first compute the partial derivatives:

fx =
x√

x2 + y2 + z2
, fy =

y√
x2 + y2 + z2

, fz =
z√

x2 + y2 + z2
.

And then we evaluate at 3, 2, 6:

f(3, 2, 6) =
√
9 + 4 + 36 =

√
49 = 7,

fx(3, 2, 6) =
3

7
, fy(3, 2, 6) =

2

7
, fz(3, 2, 6) =

6

7
.

Thus, the linear approximation is

f(x, y, z) ≈ 7 +
3

7
(x− 3) +

2

7
(y − 2) +

6

7
(z − 6).

We set x = 3.02, y = 1.97, and z = 5.99 and get

f(3.02, 1.97, 5.99) ≈ 7 +
3

7
(0.02) +

2

7
(−0.03) +

6

7
(−0.01) = 6.9914.

Let’s now find percent error:

∣∣∣∣∣6.9914−
√

(3.02)2 + (1.97)2 + (5.99)2√
(3.02)2 + (1.97)2 + (5.99)2

∣∣∣∣∣× 100% = 0.0018%
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EXAMPLE 5.4

Heat index (perceived temperature) I can be written as a function of actual temperature T
and relative humidity H. Use the following table from the National Weather Service to find
a linear approximation for the heat index I = f(T,H) when T is near 96◦F and H is near
70%. Then, use it to estimate the heat index when T = 99◦F and the relative humidity is
67%.

Solution:
We will set f(96, 70) = 125 as our starting value. We can approximate fT (96, 70) by using val-

ues around the table. The average of f(98,70)−f(96,70)
2 = 4 and f(94,70)−f(96,70)

−2 = 3.5 is 3.75,

so we have fT (96, 70) ≈ 3.75. We average out f(96,75)−f(96,70)
5 = 1 and f(96,95)−f(96,70)

−5 = 0.8
to get fH(96, 70) ≈ 0.9.

Thus, our linear approximation is

f(T,H) ≈ f(96, 70) + fT (96, 70)(T − 96) + fH(96, 70)(H − 70)

≈ 125 + 3.75(T − 96) + 0.9(H − 70).

We will use this to estimate the desired heat index:

f(99, 67) ≈ 125 + 3.75(99− 96) + 0.9(67− 70) = 133.55◦F
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For a differentiable function of one variable, y = f(x), we define the differential dx to be an
independent variable; we can assign it any real number. The corresponding change in the function’s
output is approximated by the differential dy:

dy = f ′(x)dx

∆y represents the change in height of the curve y = f(x) and dy represents the change in height of
the tangent line when x changes by an amount dx = ∆x.

And now for the multivariable definition:

For a differentiable function of two variables, y = f(x, y), we define both dx and dy as inde-
pendent variables:

dz = fx(x, y) dx+ fy(x, y) dy =
∂z

∂x
dx+

∂z

∂y
dy

Suppose dx = ∆x = x− a and dy = ∆y = y − b. Then, we can write the differential of z as

dz = fx(a, b)(x− a) + fy(a, b)(y − b)

Thus, a linear approximation can be rewritten using a differential:

f(x, y) ≈ f(a, b) + dz

Let’s now rewrite this chapter’s formulas for three or more variables. First off, we have linear
approximation:

f(x, y, z) ≈ f(a, b, c) + fx(a, b, c)(x− a) + fy(a, b, c)(y − b) + fz(a, b, c)(z − c)

and the linearization L(x, y, z) is the right side of this expression.

If w = f(x, y, z), then the increment of w is

∆w = f(x+∆x, y +∆y, z +∆z)− f(x, y, z)
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The differential dw is defined in terms of the differentials dx, dy, dz of the independent variables
by

dw =
∂w

∂x
dx+

∂w

∂y
dy +

∂w

∂z
dz

EXAMPLE 5.5

(a) If z = f(x, y) = x2 + 3xy − y2, find the differential dz.
(b) If x changes from 2 to 2.05 and y changes from 3 to 2.96, compare the values of ∆z and
dz.

Solution:

(a) We first compute the partial derivatives:

∂z

∂x
= 2x+ 3y,

∂z

∂y
= 3x− 2y

So the differential dz is

dz =
∂z

∂x
dx+

∂z

∂y
dy = (2x+ 3y) dx+ (3x− 2y) dy

(b) We plug our givens x = 2, y = 3, dx = ∆x = 0.05, and dy = ∆y = −0.04 in:

dz = [2(2) + 3(3)](0.05) + [3(2)− 2(3)](−0.04)

= [4 + 9](0.05) + [6− 6](−0.04)

= 13(0.05) + 0 = 0.65

Now we compute the increment of z which gives the actual change:

∆z = f(2.05, 2.96)− f(2, 3) = ((2.05)2 + 3(2.05)(2.96)− (2.96)2)− (4 + 18− 9) = 0.6449

We have dz ≈ ∆z, meaning that the differential was a good approximation.
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EXAMPLE 5.6

Use differentials to estimate the amount of tin in a closed tin can with a diameter of 8 cm
and height of 12 cm if the tin is 0.04 cm thick.

Solution:

The volume V of the tin is V = πr2h. Thus the amount of tin can be approximated by the
differential dV . Here, we have

dV =
∂V

∂r
dr +

∂V

∂h
dh = 2πrh dr + πr2 dh

We have dr = 0.04 cm is the thickness of the tin contributing to the side walls (increase in
radius) and dh = 0.08 cm accounts for tin on both the top and bottom surfaces. We now
plug everything in:

dV = 2πrh dr + πr2 dh = 2π(4 cm)(12 cm)(0.04 cm) + π(4 cm)2(0.08 cm) = 16.08 cm3

5.2 Directional Derivatives and the Gradient Vector

To visualize derivatives, you begin by finding two points on the curve and drawing a secant line
through them. After measuring the slope of this secant line, you transform the secant line into a
tangent line using limits. Then, you set the derivative of the function at your desired point equal
to the limit of the slope at the secant line. Here is an overview of this process for a single-variable
and real-valued function y = f(x):

That is, F : D ⊆ R → R.

We define the derivative of F (x) at a point x = a as

F ′(a) = lim
x→a

F (x)− F (a)

x− a
.

Let h = x− a, so that x = a+ h. Then the limit becomes

= lim
h→0

F (a+ h)− F (a)

h
.

Then we evaluate at x = a:
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=
d

dx
[F (x)]

∣∣∣∣
x=a

And now we will do it for partial derivatives. Let z = f(x, y) be a real-valued function of two
variables. For this, we are representing the curve from the y = b trace.

That is, f : D ⊆ R2 → R.

∂f

∂x
(a, b) = lim

x→a

f(x, b)− f(a, b)

x− a

= lim
h→0

f(a+ h, b)− f(a, b)

h

=
∂

∂x
[f(x, y)]

∣∣∣∣
(x,y)=(a,b)

For the x = a trace, it would look as follows:

∂f

∂y
(a, b) = lim

y→b

f(a, y)− f(a, b)

y − b

= lim
h→0

f(a, b+ h)− f(a, b)

h

=
∂

∂y
[f(x, y)]

∣∣∣∣
(x,y)=(a,b)

For ∂
∂x , we traveled along the y = b path. That is,

r⃗(t) = r⃗0 + t · u,

where u is the unit vector in the x-direction.

Continuing on,

r⃗(t) = ⟨a, b⟩+ t · ⟨1, 0⟩ = ⟨a+ t, b⟩.

For ∂
∂y , we traveled along the x = a path. That is,
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r⃗(t) = r⃗0 + t · u,

where u is the unit vector in the y-direction.

Continuing on,

r⃗(t) = ⟨a, b⟩+ t · ⟨0, 1⟩ = ⟨a, b+ t⟩.

So we know how to use partial derivatives to measure how a function changes along the coordinate
axes. But how can we generalize this? We would have find the slope of the tangent line to a surface
z = f(x, y) at input P0(a, b) in a general direction. This is known as the directional derivative.
Let’s try to outline this process:

We have

r⃗(t) = r⃗0(t) + t · u

where u is the unit vector in any direction.

Continuing on,

r⃗(t) = ⟨a, b⟩+ t · ⟨u1, u2⟩ = ⟨a+ tu1, b+ tu2⟩.

With the partial derivatives (purple), we were limited to the direction of the coordinate axes. With
directional derivatives (red), we can come from any direction.
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To find the slope of a tangent line to a curve C at a given point, you can compute the rate of change
of the function in the direction of a unit vector by taking its limit:

The directional derivative of f at the point (a, b) in the direction of a unit vector u = ⟨u1, u2⟩
is defined by

Duf(a, b) = lim
h→0

f(a+ hu1, b+ hu2)− f(a, b)

h
,

given that the limit exists.

The partial derivatives expressed using limits from earlier are really just special cases of directional
derivatives where

Dif(a, b) =
∂f

∂x
(a, b),

or

Djf(a, b) =
∂f

∂y
(a, b).

To avoid computing the limit definition of the directional derivative directly, we will define a new
single-variable function g(t) that captures how the multivariable function f(x, y) behaves along a
straight line in the direction of a given unit vector:

g(t) = f((⃗l(t))

where l⃗(t) = P⃗0 + tu = ⟨a+ tu1, b+ tu2⟩ = ⟨x(t), y(t)⟩.

Here, P⃗0 = ⟨a, b⟩ is the base point, and u⃗ = ⟨u1, u2⟩ is a unit direction vector. So l⃗(t) traces a
straight line in the domain of f(x, y), and g(t) gives the corresponding z-value on the surface.

Then, the directional derivative of f at the point (a, b) in the direction of u⃗ is defined as the
derivative of g(t) at t = 0:

Duf(a, b) = g′(0) =
d

dt
[g(t)]

∣∣∣∣
t=0

=
d

dt

[
f
(
l⃗(t)
)]∣∣∣∣

t=0

=
d

dt
[f (x(t), y(t))]

∣∣∣∣
t=0

Now we apply the chain rule:
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d

dt
f(x(t), y(t)) =

∂f

∂x
· dx
dt

+
∂f

∂y
· dy
dt

At t = 0, we have x(0) = a, y(0) = b, dx
dt = u1, and

dy
dt = u2, so

Duf(a, b) = fx(a, b) · u1 + fy(a, b) · u2.

This is equivalent to the dot product of the gradient vector and the direction vector. Let’s now
write out the formal definition of the dot product formula for the directional derivative:

For function of two variables f : R2 → R that is differentiable at point (a, b), the directional
derivative of f that points in the direction of the unit u = ⟨u1, u2⟩ in the xy-plane is given by

Duf(a, b) = ∇f(a, b) · u = ⟨fx(a, b), fy(a, b)⟩ · ⟨u1, u2⟩.

Or more simply,

Duf(a, b) = fx(a, b)u1 + fy(a, b)u2.
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EXAMPLE 5.7

Consider the paraboloid z = f(x, y) = 1
4 (x

2 + 2y2) + 2. Let P0 = (3, 2) and let

u =

〈
1√
2
,
1√
2

〉
and v =

〈
1

2
, −

√
3

2

〉
.

Compute Duf(3, 2) and Dvf(3, 2).

Solution:

We first compute the partial derivatives

fx(x, y) =
∂

∂x

[
1

4
(x2 + 2y2) + 2

]
=

x

2

fy(x, y) =
∂

∂y

[
1

4
(x2 + 2y2) + 2

]
= y

At the point (3, 2), we have fx(3, 2) = 3
2 and fy(3, 2) = 2. Now compute the directional

derivative in the direction of u:

Duf(3, 2) = ∇f(3, 2) · u =

〈
3

2
, 2

〉
·
〈

1√
2
,
1√
2

〉
=

3

2
· 1√

2
+ 2 · 1√

2
=

3 + 4

2
√
2

=
7

2
√
2

Next, compute the directional derivative in the direction of v:

Dvf(3, 2) =

〈
3

2
, 2

〉
·

〈
1

2
,−

√
3

2

〉
=

3

2
· 1
2
+ 2 ·

(
−
√
3

2

)
=

3

4
−

√
3
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Tangent line to f(x, y) = x2 + y2 at (2, 2)
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EXAMPLE 5.8

Find the directional derivative of f(x, y) = 3x2 − 2y2 at the point
(
− 3

4 , 0
)
in the direction

from P =
(
− 3

4 , 0
)
to Q = (0, 1).

Solution:

First we find a vector in the specified direction and then turn it into a unit vector:

−−→
PQ = v⃗ = ⟨0− (− 3

4 ), 1− 0⟩ =
〈
3
4 , 1

〉
∥v⃗∥ =

√(
3
4

)2
+ 12 =

√
25
16 = 5

4

u =
v⃗

∥v⃗∥
=
〈
3
4 , 1

〉
· 4
5
=
〈
3
5 ,

4
5

〉

We find the partial derivatives fx(x, y) = 6x and fy(x, y) = −4y and then use them to
compute the gradient vector:

∇f(x, y) = ⟨6x, −4y⟩

∇f
(
− 3

4 , 0
)
=
〈
6 ·
(
− 3

4

)
, −4 · 0

〉
=
〈
− 9

2 , 0
〉

We now compute the directional derivative:

Duf
(
− 3

4 , 0
)
= ∇f

(
− 3

4 , 0
)
· u =

〈
− 9

2 , 0
〉
·
〈
3
5 ,

4
5

〉
=
(
− 9

2 · 3
5

)
+ (0 · 4

5 ) = − 27
10
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Let’s now generalize to functions in three dimensions:

The directional derivative of f at the point (a, b) in the direction of a unit vector u = ⟨u1, u2⟩
is defined by

Duf(a, b) = lim
h→0

f(a+ hu1, b+ hu2)− f(a, b)

h

given that the limit exists.

Let f : R3 → R be a differentiable function. The gradient of f at (x, y, z) is the vector:

∇f(x, y, z) = ⟨fx(x, y, z), fy(x, y, z), fz(x, y, z)⟩

Now we will discuss the gradient vector ∇f geometrically. Suppose f(x, y) is differentiable at a
point (a, b), and let u be any unit vector.

Then the directional derivative is given by

Duf(a, b) = ∇f(a, b) · u.

Using the dot product formula, we get

∇f(a, b) · u = ∥∇f(a, b)∥ · ∥u∥ · cos(θ),

where θ is the angle between ∇f(a, b) and u. Since ∥u∥ = 1, we simplify:

Duf(a, b) = ∥∇f(a, b)∥ cos(θ)

The directional derivative is maximized with respect to θ when cos(θ) = 1, which occurs when
θ = 0. In this case, the direction vector u points in the same direction as ∇f(a, b). Thus,

Duf(a, b) = ∥∇f(a, b)∥.

This means the function increases most rapidly when you move in the direction of the gradient.
The gradient vector points in the direction of steepest ascent.

The directional derivative is minimized with respect to θ when cos(θ) = −1, which occurs when
θ = π. In this case, the direction vector u points in the opposite direction of the gradient. Thus,
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Duf(a, b) = −∥∇f(a, b)∥.

This represents the direction of steepest descent. The gradient vector points opposite the direction
of the fastest decrease.

This leads to two theorems:

Let f : R2 → R be differentiable at a point (a, b), with ∇f(a, b) ̸= 0⃗.

1. f is maximized when u points in the direction of ∇f(a, b). In this case,

Duf(a, b) = ∥∇f(a, b)∥.

2. f is minimized when u points in the direction of −∇f(a, b). In this case,

Duf(a, b) = −∥∇f(a, b)∥.

3. The directional derivative is zero in any direction orthogonal to −∇f(a, b).

Let f : R2 → R be differentiable at a point (a, b). Then the gradient vector ∇f(a, b) is per-
pendicular to the level curve of f passing through (a, b), provided ∇f(a, b) ̸= 0⃗. Equivalently,
the tangent line to the level curve of f at (a, b) is orthogonal to the gradient vector.

For a topographical map of a hill, the curve of steepest ascent is perpendicular to all of the contour
lines. Image credit: Stewart
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EXAMPLE 5.9

Suppose the temperature at a point (x, y, z) in space is given by

T (x, y, z) =
80

1 + x2 + 2y2 + 3z2

where T is in degrees Celsius and position is measured in meters. In which direction does
the temperature increase most rapidly at the point (1, 1,−2)? What is the maximum rate
of increase?

Solution:

Compute the gradient ∇T :

∇T (x, y, z) =

〈
∂T

∂x
,
∂T

∂y
,
∂T

∂z

〉

=

〈
−160x

(1 + x2 + 2y2 + 3z2)2
,

−320y

(1 + x2 + 2y2 + 3z2)2
,

−480z

(1 + x2 + 2y2 + 3z2)2

〉

Now, let’s evaluate ∇T at (1, 1,−2):

∇T (1, 1,−2) =
160

(1 + 1 + 2 + 12)2
· ⟨−1, −2, 6⟩

=
160

256
· ⟨−1, −2, 6⟩ = 5

8
· ⟨−1, −2, 6⟩

=

〈
−5

8
, −5

4
,
15

4

〉

And thus the maximum rate of increase is the length of the gradient vector in the direction
of the gradient vector:

∥∇T (1, 1,−2)∥ =

∥∥∥∥58 · ⟨−1, −2, 6⟩
∥∥∥∥

=
5

8
·
√

12 + 22 + 62 =
5

8
·
√
41

=
5

8
·
√
41 ◦C/m
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5.3 Maxima and Minima

In single-variable calculus, you found critical points using the first derivative and then the second
derivative to classify them. We will now learn how to do this for multivariable functions.

A function of two variables has a local maximum at (a, b) if

f(x, y) ≤ f(a, b)

for all points (x, y) near (a, b). In other words, f(x, y) ≤ f(a, b) for all points (x, y) in some
disk centered at (a, b). In this case, the value f(a, b) is called a local maximum value.

Similarly, f has a local minimum at (a, b) if

f(x, y) ≥ f(a, b)

for all points (x, y) near (a, b). Then, f(a, b) is a local minimum value.
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If the inequality conditions above hold for all points in the domain of f , then we call f(a, b) an
absolute maximum or absolute minimum.

Now, we have our criteria for local extrema:

Critical points: If f has a local maximum or minimum at (a, b), and if the first-order partial
derivatives of f exist at that point, then fx(a, b) = 0 and fy(a, b) = 0. Alternatively, this is
where ∇f(a, b) = 0.

EXAMPLE 5.10

Find the local and absolute minimum of the function f(x, y) = x2 + y2 − 2x− 6y + 14.

Solution:

We compute the partial derivatives:

fx(x, y) = 2x− 2, fy(x, y) = 2y − 6.

Setting the derivatives equal to zero, we solve

2x− 2 = 0 ⇒ x = 1, 2y − 6 = 0 ⇒ y = 3.

Thus, the only critical point is (1, 3). To classify the critical point, we complete the square:

f(x, y) = x2 − 2x+ y2 − 6y + 14 = (x− 1)2 + (y − 3)2 + 4.

Since (x− 1)2 ≥ 0 and (y − 3)2 ≥ 0, we conclude that f(x, y) ≥ 4 for all values of x and y.
Therefore, f(1, 3) = 4 is a local minimum, and also the absolute minimum of f .
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Let f : R2 → R be a function of two variables. Suppose that f(x, y) is twice differentiable on
an open disk centered at the point (a, b), where ∇f(a, b) = 0⃗. We will define the discriminant
of f to be the function

D(x, y) = fxx(x, y)fyy(x, y)− (fxy(x, y))
2

Then we can use this to make the following conclusions:

• If D(a, b) > 0 and fxx(a, b) < 0, then f has a local maximum at (a, b).

• If D(a, b) > 0 and fxx(a, b) > 0, then f has a local minimum at (a, b).

• If D(a, b) < 0, then f has a saddle point at (a, b).

• If D(a, b) = 0, the test is inconclusive.

Let f : R2 → R be a function of two variables. The function f is said to have a saddle point
at the critical point (a, b) if and only if, in every disk centered at (a, b) the following holds:

There is at least one point (x, y) such that f(x, y) > f(a, b) and at least one additional point
(x, y) such that f(x, y) < f(a, b).

A surface with a saddle point in red
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EXAMPLE 5.11

Find and classify the critical points of the function f(x, y) = 10x2y − 5x2 − 4y2 − x4 − 2y4.

Solution:

First, compute the partial derivatives:

fx(x, y) = 20xy − 10x− 4x3, fy(x, y) = 10x2 − 8y − 8y3

To find the critical points, we solve the following:

fx(x, y) = 2x(10y − 5− 2x2) = 0

fy(x, y) = 10x2 − 8y − 8y3 = 0

From the first equation, we see that when x = 0, then fy = −8y(1 + y2) = 0 ⇒ y = 0,
giving the critical point (0, 0). If x ̸= 0, we get 10y − 5− 2x2 = 0 ⇒ x2 = 5y − 2.5. We now
substitute into fy:

10(5y − 2.5)− 8y − 8y3 = 0 ⇒ 50y − 25− 8y − 8y3 = 0 ⇒ 4y3 − 42y + 25 = 0

Solving this yields y = −2.5452, y = 0.6468, y = 1.8984. Using x2 = 5y − 2.5, we can find
the corresponding x-values. For y = −2.5452, we get no real values. For y = 0.6468, we get
x = ±0.8567. For y = 1.8984, we get x = ±2.6442. Finally, for these points, we will use the
second derivative test:

D = fxxfyy − (fxy)
2

We find the following:

Point f(x, y) fxx D Conclusion

(0, 0) 0.00 -10.00 80.00 Local maximum

(±2.64, 1.90) 8.50 -55.93 2488.72 Local maximum

(±0.86, 0.65) -1.48 -5.87 -187.64 Saddle point
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EXAMPLE 5.11 (CONTINUED)

Here we have a graph of the surface with the critical points on it:

Here we have the critical points shown on a contour map:

Image credit: Strang & Herman
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EXAMPLE 5.12

Find the shortest distance from a general point (1, 0,−2) to the plane x+ 2y + z = 4.

Solution:

The distance d from any point (x, y, z) to the point (1, 0,−2) is

d =
√
(x− 1)2 + y2 + (z + 2)2.

If (x, y, z) lies on the plane x+ 2y + z = 4, then z = 4− x− 2y, and so

d =
√
(x− 1)2 + y2 + (6− x− 2y)2.

To minimize d, we must minimize f(x, y) = (x− 1)2 + y2 + (6− x− 2y)2. We first compute
the partial derivatives:

fx = 2(x− 1)− 2(6− x− 2y) = 4x+ 4y − 14, fy = 2y − 4(6− x− 2y) = 4x+ 10y − 24

We then set them equal to 0 and solve to yield the critical point ( 116 , 5
3 ).

Since fxx = 4, fxy = 4, and fyy = 10, we have D(x, y) = fxxfyy − (fxy)
2 = 24. We thus

have D(x, y) > 0 and fxx > 0, meaning that f has a local minimum at ( 116 , 5
3 ). Given that

this is the only critical point, it’s also the absolute minimum.

Now we calculate the distance from (1, 0,−2):

d =
√
(x− 1)2 + y2 + (6− x− 2y)2 =

√(
5

6

)2

+

(
5

3

)2

+

(
5

6

)2

=
5

6

√
6.
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By the extreme value theorem, if f is continuous on a closed, bounded set R ∈ R2, then f has an
absolute maximum value f(x1, y1) and an absolute minimum value f(x2, y2) at points (x1, y1) ∈ D
and (x2, y2) ∈ D. To find the values this theorem guarantees, we have the following:

To find the absolute maximum and minimum values of a continuous function f : R2 → R on
a closed, bounded set R ⊆ R2,

1. Find the output values of f at the critical points of f in R.

2. Find the maximum and minimum of f on the boundary of R.

3. The largest of the values from steps 1 and 2 is the absolute maximum value.

4. The smallest of these values from steps 1 and 2 is the absolute minimum value.

5.4 Lagrange Multipliers

Just in case you forgot, an optimization problem is where you minimize or maximize a function.
We will sometimes be tasked to solve optimization problems with a constraint, which means there’s
a limit on how large or small a certain variable can get. To solve an optimization problem, the
first thing you need to do is interpret the situation. This can include creating a visualization
and modeling it through equations. Then, you want to differentiate your objective function, find
critical points, and test. Optimization is one of the most important ideas in applied math. Every
day, software engineers and mathematicians are likely working on further optimization of the very
algorithms behind the search engine you are using to view this guide. Together, with economists,
they also analyze different facets of the production of your computer, car, and phone with the goal
of saving time, energy, and money through optimization.
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EXAMPLE 5.13

A cardboard box without a lid is to have a volume of 32,000 cm3. Find the dimensions that
minimize the amount of cardboard used.

Solution:

Let the dimensions of the box be x, y, and z. The volume constraint is xyz = 32,000. The
surface area to minimize is f(x, y, z) = xy + 2xz + 2yz. We solve the constraint for z and
get z = 32,000

xy .

Substituting this in, we get the equation

f(x, y) = xy + 2x

(
32,000

xy

)
+ 2y

(
32,000

xy

)
= xy +

64,000(x+ y)

xy

Compute the partial derivatives:

fx = y − 64,000

x2
, fy = x− 64,000

y2

Set these equal to zero to get

y =
64,000

x2
, x =

64,000

y2
= x = y

x3 = 64,000 ⇒ x = y = 40

Then, we can solve to get z = 20. Lastly, the second derivative test confirms that this is is a
local minimum. Thus, the dimensions of the box are x = 40 cm, y = 40 cm, and z = 20 cm.

Suppose we want to find the extreme values of a differentiable function f(x, y, z), subject to a
constraint g(x, y, z) = k. This constraint forces us to remain on the surface S defined by the level
set of g.

Let r⃗(t) = ⟨x(t), y(t), z(t)⟩ be a smooth curve that lies entirely on the surface g(x, y, z) = k and
passes through the point (x0, y0, z0). We have

h(t) = f(x(t), y(t), z(t)),

https://rhoclouds.github.io


https://rhoclouds.github.io 234

which gives the values of f along the curve. If f has a maximum or minimum at the point (x0, y0, z0),
then h(t) has a local extrema at t = t0, and so h′(t0) = 0.

Using the chain rule, we compute

h′(t0) = fx
dx

dt
+ fy

dy

dt
+ fz

dz

dt
= ∇f(x0, y0, z0) · r⃗ ′(t0).

This tells us that ∇f(x0, y0, z0) is orthogonal to the tangent vector r⃗ ′(t0) of every curve on the
surface. But since ∇g(x0, y0, z0) is also orthogonal to such tangent vectors (because g is constant
on the surface), the gradients must be parallel. Therefore, there exists a scalar λ such that

∇f(x0, y0, z0) = λ∇g(x0, y0, z0),

given that ∇g(x0, y0, z0) > 0. This is called a Lagrange multiplier.

Let the objective function f : R2 → R and the constraint function g : R2 → R be differentiable
on a region in R2. Assume that ∇g(x, y) ̸= 0⃗ on the curve C defined by the constraint
g(x, y) = 0.

To find the maximum or minimum values of f(x, y) subject to the constraint g(x, y) = 0, find
all values of x, y, and λ that satisfy

∇fx(x, y) = ∇λgx(x, y)

and

g(x, y) = 0.

Among the points (x, y) found, evaluate f(x, y) and identify the largest and smallest values.
These are the maximum and minimum values of f subject to the given constraint.

The equation

⟨fx(x, y), fy(x, y)⟩ = ∇f(x, y) = λ∇g(x, y) = λ⟨gx(x, y), gy(x, y)⟩

is a vector equation. Therefore, the method of Lagrange multipliers in two variables involves solving
these three equations:
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1. fx(x, y) = λgx(x, y)

2. fy(x, y) = λgy(x, y)

3. g(x, y) = 0

The graph of z = y2 − x with the constraint 2x2 + 2xy + y2 = 1 drawn in red and the extreme
values in green. Image credit: UMich
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EXAMPLE 5.14

Find the extreme values of the function f(x, y) = x2 + 2y2 on the circle x2 + y2 = 1.

Solution:

We are asked to find the extreme values of f subject to the constraint

g(x, y) = x2 + y2 = 1.

Using Lagrange multipliers, we solve the equations ∇f = λ∇g and g(x, y) = 1.
which give:

1. fx = 2x = λ · 2x

2. fy = 4y = λ · 2y

3. x2 + y2 = 1

From the first equation, we have x = 0 or λ = 1.
If x = 0, then x2 + y2 = 1 ⇒ y = ±1.
If λ = 1, then from the second equation we get y = 0 ⇒ x = ±1.

Thus, the critical points are (0, 1), (0,−1), (1, 0), and (−1, 0). If we plug each of these into
f , we get

f(0, 1) = 2, f(0,−1) = 2, f(1, 0) = 1, f(−1, 0) = 1.

Therefore, the maximum value of f on the circle 2. And the minimum value is 1.
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We now expand the method of Lagrange multipliers to three variables:

Let the objective function f : R3 → R and the constraint function g : R3 → R be differentiable
on a region in R2. Assume that ∇g(x, y, z) ̸= 0⃗ on the curve C defined by the constraint
g(x, y, z) = 0.

To find the maximum or minimum values of f(x, y) subject to the constraint g(x, y, z) = 0,
find all values of x, y, z, and λ that satisfy

∇fx(x, y, z) = ∇λgx(x, y, z)

and

g(x, y, z) = 0.

Among the points (x, y, z) found, evaluate f(x, y, z) and identify the largest and smallest
values. These are the maximum and minimum values of f subject to the given constraint.

To use this, we solve these four equations:

1. fx(x, y, z) = λgx(x, y, z)

2. fy(x, y, z) = λgy(x, y, z)

3. fz(x, y, z) = λgz(x, y, z)

4. g(x, y, z) = 0
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We now move on to two constraints:

Let f(x, y, z) be the objective function, and suppose we have two constraints

g(x, y, z) = k and h(x, y, z) = c

To find the extreme values of f subject to both constraints, we solve the equation

∇f(x, y, z) = λ∇g(x, y, z) + µ∇h(x, y, z)

Together with g(x, y, z) = k and h(x, y, z) = c, this gives us a system of five equations:

fx = λgx + µhx

fy = λgy + µhy

fz = λgz + µhz

g(x, y, z) = k

h(x, y, z) = c

Solving this system yields the candidate points for extrema of f on the intersection of the two
constraint surfaces.
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EXAMPLE 5.15

Find the maximum value of the function f(x, y, z) = x+2y+3z on the curve of intersection
of the plane x− y + z = 1 and the cylinder x2 + y2 = 1.

Solution:

We maximize f(x, y, z) subject to the following constraints:

g(x, y, z) = x− y + z = 1, h(x, y, z) = x2 + y2 = 1

Using the method of Lagrange multipliers with two constraints, ∇f = λ∇g + µ∇h, we have
to solve the following five equations:

1 = λ+ 2xµ

2 = −λ+ 2yµ

3 = λ

x− y + z = 1

x2 + y2 = 1

From the third equation, we have λ = 3. Substituting this gives

1 = 3 + 2xµ ⇒ x =
−1

µ

2 = −3 + 2yµ ⇒ y =
5

2µ

Substitute into the constraint:

(
−1

µ

)2

+

(
5

2µ

)2

= 1 ⇒ 1

µ2
+

25

4µ2
= 1 ⇒ 29

4µ2
= 1 ⇒ µ = ±

√
29

2
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EXAMPLE 5.15 (CONTINUED)

So we have

x = ± 2√
29

, y = ± 5√
29

, and z = 1− x+ y = 1± 7√
29

.

We then plug in to get f(x, y, z) = x+ 2y + 3z = 3±
√
29.

Here is the graph:

Image credit: Stewart
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EXAMPLE 5.16

By investing x units of labor and y units of capital, a company produces shirts given by
the function f(x, y) = 40x3/5y2/5. Determine the maximum number of shirts that can be
produced on a budget of $10,000 if labor costs $100 per unit and capital costs $200 per unit.

Solution:

We are to maximize f(x, y) = 40x3/5y2/5 with the constraint g(x, y) = 100x+200y−10,000 =
0. The maximum occurs at solutions of ∇f = λ∇g and g(x, y) = 0.
Compute the gradients:

fx =
∂f

∂x
= 40 · 3

5
x−2/5y2/5

fy =
∂f

∂y
= 40 · 2

5
x3/5y−3/5

Thus ∇f(x, y) = 8x−2/5y−3/5 · ⟨3y, 2x⟩ and ∇g(x, y) = ⟨100, 200⟩.
The critical points occur at solutions of

8x−2/5y−3/5 · 3y = 100λ

and

8x−2/5y−3/5 · 2x = 200λ.

This simplifies to

3y

100
=

2x

200
⇒ y =

1

3
x.

We substitute this into the constraint to get

100x+ 200

(
1

3
x

)
= 10,000 ⇒ x = 60 ⇒ y = 20.

Lastly, f(60, 20) = 40(60)3/5(20)2/5 = 1546.55. Thus, they can produce a maximum of 1546
shirts.
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Part II

Multiple Integrals

In Part II, we will move beyond differentiation and focus on accumulation: computing areas,
volumes, masses, and other quantities over regions in multiple dimensions. We will work with
double and triple integrals over rectangular and general regions. We’ll also work with them them
over polar, cylindrical, and spherical coordinates which can simplify problems. Finally, we’ll study
the technique known as change of variables. By the end of this part, you will have learned about

• Setting up and evaluating double and triple integrals over different regions

• Using polar, cylindrical, and spherical coordinates to simplify integrals

• Applying multiple integrals

• Performing transformations and computing Jacobians

• Evaluating multiple integrals using a change of variables

The Large Hadron Collider (LHC) in Switzerland uses powerful magnetic fields to bend subatomic
particles around a 27 km ring close to the speed of light. Maxwell’s equations, which use surface
and line integrals to govern electromagnetism, are responsible for our understanding of the science
behind the LHC. Without multiple integrals, particle accelerators like the LHC and even much of
modern technology would not exist. Image credit: CERN

https://rhoclouds.github.io


https://rhoclouds.github.io 243

6 Double Integrals

What happens if we have a function that accumulates over a region of a two dimensional plane?
The truth is that when quantities accumulate in two dimensions, a single definite integral no longer
is sufficient. Let’s learn about what we can do instead.

6.1 Double Integration Over Rectangles

Let z = f(x, y) be a nonnegative, explicit function representation of a surface in R3 with f : D ⊆
R2 → R where D is a rectangular region given by

D = {(x, y) : a ≤ x ≤ b, c ≤ y ≤ d} = {(x, y) : x ∈ [a, b], y ∈ [c, d]}.

We can divide D into subrectangles by dividing the interval into n subintervals using lines parallel
to the x- and y-axes. Note that the lines and points in them do not need to be uniformly spaced:

If we choose any point (x∗
i,j , y

∗
i.j) in each Ri,j , we can approximate the part of the surface that lies

above each Ri,j using a thin rectangular box. We will let ∆x represent the width of each Ri,j and
∆yk represent the height of each Ri,j . Thus, the area of the base is given by ∆Ak = ∆xk∆yk.
Then we have f(x∗

i,j , y
∗
i.j) representing the height of the kth box and ∆Ak representing the area of

the base of the kth box for 1 ≤ k ≤ n. Then, the volume of each box is given by
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Vk = f(x∗
i,j , y

∗
i,j)∆Ak = f(x∗

i,j , y
∗
i,j)∆xk∆yk.

We can approximate the volume of the whole solid by adding up all of the boxes:

Vk ≈
m∑
i=1

n∑
j=1

f(x∗
i,j , y

∗
i,j)∆xk∆yk,

where m denotes the number of subintervals [xi−1, xi] and n denotes the number of subintervals
[yi−1, yi].

For a different division of D, the process might look like this:

Image credit: Stewart

As the number of subintervals m and n increase, we get a better approximation. Thus, we can say
that

V = lim
m,n→∞

m∑
i=1

n∑
j=1

f(x∗
i,j , y

∗
i,j)∆A.

This is called a double Riemann sum.

Or more generally,

V =

∫∫
R

f(x, y) dA.
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The double Riemann sum is used to approximate double integrals.

EXAMPLE 6.1

Estimate the volume of the solid that lies above the square R = [0, 2] × [0, 2] and below
the elliptic paraboloid z = 16 − x2 − 2y2. Divide R into four equal squares and choose the
sample point to be the upper right corner of each square Ri,j . Approximate the volume
using a Riemann sum.

Image credit: Stewart

Solution:

The region is divided into four equal squares m = n = 2, so the area of each square is
∆A = 1. We evaluate the Riemann sum using the sample points (1, 1), (1, 2), (2, 1), (2, 2).
The volume is approximately

V ≈
2∑

i=1

2∑
j=1

f(xi, yj)∆A

= f(1, 1)∆A+ f(1, 2)∆A+ f(2, 1)∆A+ f(2, 2)∆A

= (13)(1) + (7)(1) + (10)(1) + (4)(1)

= 34 units.
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Less rectangles mean worse accuracy More rectangles yield a more accurate sum

Image credit: UMich

The methods of approximating single integrals all have counterparts for double integrals. For
instance, here is the midpoint rule for double integrals:

∫∫
R

f(x, y) dA ≈
m∑
i=1

n∑
j=1

f(x̄i, ȳj)∆A

where x̄i is the midpoint of [xi−1, xi] and ȳj is the midpoint of [yj−1, yj ].
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EXAMPLE 6.2

Use the midpoint rule with m = n = 2 to estimate the value of the integral
∫∫

R
(x− 3y2) dA,

where R = {(x, y) | 0 ≤ x ≤ 2, 1 ≤ y ≤ 2}.

Image credit: Stewart

Solution:

Using the midpoint rule with m = 2, we evaluate f(x, y) = x− 3y2 at the centers of the four
subrectangles. The midpoints are

x̄1 =
1

2
, x̄2 =

3

2
, ȳ1 =

5

4
, ȳ2 =

7

4

and the area of each subrectangle is ∆A = 1
2 . Thus we have

∫∫
R

(x− 3y2) dA ≈
2∑

i=1

2∑
j=1

f(x̄i, ȳj)∆A

= f(x̄1, ȳ1)∆A+ f(x̄1, ȳ2)∆A+ f(x̄2, ȳ1)∆A+ f(x̄2, ȳ2)∆A

= f

(
1

2
,
5

4

)
· 1
2
+ f

(
1

2
,
7

4

)
· 1
2
+ f

(
3

2
,
5

4

)
· 1
2
+ f

(
3

2
,
7

4

)
· 1
2

=

(
−67

16
· 1
2

)
+

(
−139

16
· 1
2

)
+

(
−51

16
· 1
2

)
+

(
−123

16
· 1
2

)
= −95

8
= −11.875.
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Suppose we are given a function f(x, y) = 6 − 2x − y and a rectangular region D = {(x, y) | 0 ≤
x ≤ 1, 0 ≤ y ≤ 2}.

We want to evaluate the double integral

V =

∫∫
D

f(x, y) dA. =

∫∫
D

6− 2x− y dA.

Using the general slicing method, we can cut the solid using planes in the direction (⟨1, 0, 0⟩ (per-
pendicular to the x-axis). We will first use single-variable integration to find the area under each
yz-trace as a function of x. Then, we will integrate over all values of x ∈ D to find the total volume.

We begin by writing

V =

∫∫
D

(6− 2x− y) dA =

∫ 1

0

A(x) dx,

where

A(x) =

∫ 2

0

(6− 2x− y) dy.

If we treat x as constant and find area under the yz-trace for 0 ≤ x ≤ 1, then

A(x) =

∫ 2

0

(6− 2x− y) dy =

[
6y − 2xy − y2

2

]2
0

= 12− 4x− 2 = 10− 4x.

Now we integrate:

V =

∫ 1

0

(10− 4x) dx =
[
10x− 2x2

]1
0
= 10− 2 = 8 units3.

We could have also sliced using y-direction cross sections instead. That is, using xz-traces for all
y-values between 0 ≤ y ≤ 2. We have

V =

∫∫
D

f(x, y) dA =

∫ 2

0

A(y) dy,

where
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A(y) =

∫ 1

0

(6− 2x− y) dx.

If we treat y as constant, then

A(y) =

∫ 1

0

(6− 2x− y) dx =
[
6x− x2 − xy

]1
0
= 6− 1− y = 5− y

Now integrate:

V =

∫ 2

0

(5− y) dy =

[
5y − y2

2

]2
0

= 10− 2 = 8 units3.

We used two different approaches, but both yielded the same answer. Let’s gather our thoughts by
generalizing the process:

We were interested in computing the volume under a surface z = f(x, y) over a rectangular region
D = {(x, y) | 0 ≤ x ≤ 1, 0 ≤ y ≤ 2}. This volume is given by the double integral:

V =

∫∫
D

f(x, y) dA

We can interpret this volume using the slicing method. First, fix a value of x ∈ [a, b]. For this fixed
x, the vertical cross-section of the surface in the yz-plane gives a curve f(x, y). The area under this
curve for y ∈ [c, d] is a function of x, which we define as

A(x) =

∫ d

c

f(x, y) dy.

This is the area under the trace of the surface for a fixed x. To recover the total volume, we
integrate these area slices across x ∈ [a, b]:

V =

∫ b

a

A(x) dx =

∫ b

a

(∫ d

c

f(x, y) dy

)
dx

Therefore, the volume under the surface can be written as an iterated integral:

V =

∫ b

a

∫ d

c

f(x, y) dy dx
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We evaluate the inner integral with respect to y first and hold x constant, which results in a function
of x. Then we evaluate the outer integral.

We also sliced the solid in the other direction, fixing a value of y ∈ [c, d] and considering the xz-trace
of the surface. In this case, we define

A(y) =

∫ b

a

f(x, y) dx.

and integrate over y ∈ [c, d]:

V =

∫ d

c

A(y) dy =

∫ d

c

(∫ b

a

f(x, y) dx

)
dy

This gives the alternate iterated integral:

V =

∫ d

c

∫ b

a

f(x, y) dx dy

We evaluate the inner integral with respect to x first and hold y constant, which results in a function
of y. Then we evaluate the outer integral. Let’s now write out our conclusion which is a property
of double integrals known as Fubini’s theorem.

The double integral over a rectangular region for a continuous function f(x, y) over the rect-
angular regions D = {(x, y) | 0 ≤ x ≤ 1, 0 ≤ y ≤ 2} can be computed by integrating in either
order:

∫∫
D

f(x, y) dA =

∫ b

a

∫ d

c

f(x, y) dy dx =

∫ d

c

∫ b

a

f(x, y) dx dy

The differential area element dA is thus interpreted as either dx dy or dy dx, depending on the
method of slicing you pick.
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This is a visualization of Fubini’s theorem. In (a), we integrate first with respect to y and then with
respect to x to find area A(x). In (b), we integrate first with respect to x and then with respect to
y to find area A(y). Image credit: Strang & Herman
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EXAMPLE 6.3

Evaluate the integral
∫∫

D
f(x, y) dA, where f(x, y) = yexy and D = {(x, y) | 0 ≤ x ≤ 1, 0 ≤

y ≤ ln(2).

Solution:

By Fubini’s theorem, we can evaluate this integral using either of the two iterated forms:

∫∫
D

yexy dA =

∫ 1

0

(∫ ln(2)

0

yexy dy

)
dx =

∫ ln(2)

0

(∫ 1

0

yexy dx

)
dy

We begin with the first form
∫ ln(2)

0
yexy dy:

Use integration by parts: Let u = y, dv = exydy ⇒ v = 1
xe

xy, so

∫
yexy dy =

y

x
exy − 1

x2
exy =

exy

x2
(xy − 1)

Evaluate from y = 0 to y = ln(2):

∫ ln(2)

0

yexy dy =
2x

x2
(x ln(2)− 1) +

1

x2

So the outer integral becomes:

∫ 1

0

[
2x

x2
(x ln(2)− 1) +

1

x2

]
dx

This is difficult to evaluate by hand.

Here is the result computed numerically in MATLAB. log is the natural logarithm.

Here is the result computed symbolically in Mathematica. log is the natural logarithm.
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EXAMPLE 6.3 (CONTINUED)

And now we will evaluate the second form:

∫ 1

0

yexy dx = y

∫ 1

0

exy dx

Letting u = xy ⇒ du = y dx ⇒ dx = du
y , we get

∫ 1

0

exy dx =
1

y

∫ y

0

eu du =
1

y
(ey − 1)

Thus,

y ·
(
1

y
(ey − 1)

)
= ey − 1

Now we integrate:

∫ ln(2)

0

(ey − 1) dy = [ey − y]
ln(2)
0 = (2− ln(2))− (1− 0)

= 1− ln(2)
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Recall from single-variable calculus that the average value of a function f on an interval [a, b] is

favg =
1

b− a

∫ b

a

f(x) dx.

Let’s now define this for double integrals:

The average value of a function f of two variables over a rectangle R is defined to be

favg =
1

A(R)

∫∫
R

f(x, y) dA.

where A(R) is the area of the region R. If f(x, y) ≥ 0, this equation can be rearranged as:

A(R) · favg =

∫∫
R

f(x, y) dA.
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EXAMPLE 6.4

A contour map is shown for a function f on the square region R = [0, 4]× [0, 4].

Image credit: Stewart

(a) Use the midpoint rule with m = n = 2 to estimate the value of
∫∫

R
f(x, y) dA.

(b) Estimate the average value of f on R.

Solution:

We divide the region into four subrectangles, each with area ∆A = 4, and estimate f at the
midpoint of each:

∫∫
R

f(x, y) dA ≈
2∑

i=1

2∑
j=1

f(x̄i, ȳj)∆A = ∆A[f(1, 1) + f(1, 3) + f(3, 1) + f(3, 3)]

= ∆A[27 + 4 + 14 + 17] = 4 · 62 = 248

(b) The area of R is A(R) = 16, so the average value is

favg =
1

A(R)

∫∫
R

f(x, y) dA =
1

16
(248) = 15.5.
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Lastly, we have some important properties of double integrals:

1. Linearity with respect to addition

∫∫
R

[f(x, y) + g(x, y)] dA =

∫∫
R

f(x, y) dA+

∫∫
R

g(x, y) dA

2. Linearity with respect to scalar multiplication

∫∫
R

cf(x, y) dA = c

∫∫
R

f(x, y) dA where c is a constant

3. Monotonocity

If f(x, y) ≥ g(x, y) for all (x, y) ∈ R, then∫∫
R

f(x, y) dA ≥
∫∫

R

g(x, y) dA
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6.2 Double Integration Over General Regions

Let f : D ⊂ R2 → R be a continuous function on a closed and bounded nonrectangular region D.
We can partition D into rectangles just as we did with rectangular regions. The difference this time,
however, is that we cannot cover a nonrectangular region perfectly with rectangles. We will only
count the ones that lie completely within D. Also note that D can be enclosed by a rectangular
region R.

For some surface z = f(x, y) where f : D ⊂ R2 → R, the net volume of the solid bounded by the z
and D in the xy-plane can be approximated by the Riemann sum

V ≈
n∑

k=1

f(x∗
k, y

∗
k)∆Ak

where (x∗
k, y

∗
k) is a sample point in the kth subrectangle of the partition inside D and ∆Ak is the

area of the kth rectangle written as ∆xk∆yk.

Type I nonrectangular regions are a region D ⊂ R2 that are known as y-simple:

D =
{
(x, y) ∈ R2 | a ≤ x ≤ b, g1(x) ≤ y ≤ g2(x)

}
For each value of x, the vertical line through x intersects the region D in a segment between
functions y = g1(x) and y = g2(x).This makes it possible to compute the area or volume using
vertical slices.

A type I region lies between two vertical lines and two functions of x.
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To evaluate a double integral over a type I region, we choose a rectangle R = [a, b] × [c, d] that
contains D. It may look something like this:

We integrate as follows using Fubini’s theorem:

∫∫
D

f(x, y) dA =

∫∫
R

F (x, y) dA =

∫ b

a

∫ d

c

F (x, y) dy dx

Notice that F (x, y) = 0 if y < g1(x) or y > g2(x) because (x, y) would then lie outside D. Therefore,

∫ d

c

F (x, y) dy =

∫ g2(x)

g1(x)

F (x, y) dy =

∫ g2(x)

g1(x)

f(x, y) dy,

because F (x, y) = f(x, y) when g1(x) ≤ y ≤ g2(x).
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Thus we have the following formula that lets us evaluate the double integral as an iterated integral.

If f is continuous on a type I region D such that

D = {(x, y) | a ≤ x ≤ b, g1(x) ≤ y ≤ g2(x)} ,

then

∫∫
D

f(x, y) dA =

∫ b

a

∫ g2(x)

g1(x)

f(x, y) dy dx.

Next, we have type II regions which are known as x-simple and satisfy

D = {(x, y) | c ≤ y ≤ d, h1(y) ≤ x ≤ h2(y)} .

A type II region lies between two horizontal lines and the graphs of two functions of y.
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If f is continuous on a type II region D such that

D = {(x, y) | c ≤ y ≤ d, h1(y) ≤ x ≤ h2(y)} ,

then

∫∫
D

f(x, y) dA =

∫ d

c

∫ h2(y)

h1(y)

f(x, y) dx dy,

where D is a type II region.

D =
{
(x, y)

∣∣ 0 ≤ x ≤ 2, x2 ≤ y ≤ 2x
}
as a type

I region
D =

{
(x, y)

∣∣ 0 ≤ x ≤ 2, x2 ≤ y ≤ 2x
}
as a type

II region

Image credit: Stewart
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EXAMPLE 6.5

Evaluate the integral

∫∫
D

(x+ 2y) dA,

where D is the region bounded by the parabolas y = 2x2 and y = 1 + x2.

Image credit: Stewart

Solution:

The parabolas intersect when 2x2 = 1 + x2, so x2 = 1 ⇒ x = ±1. The region D is a type I
region. We can write

D =
{
(x, y)

∣∣ − 1 ≤ x ≤ 1, 2x2 ≤ y ≤ 1 + x2
}
.
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EXAMPLE 6.5 (CONTINUED)

Since the lower boundary is y = 2x2 and the upper boundary is y = 1 + x2, we compute as
follows:

∫∫
D

(x+ 2y) dA =

∫ 1

−1

∫ 1+x2

2x2

(x+ 2y) dy dx

=

∫ 1

−1

[
xy + y2

]y=1+x2

y=2x2 dx

=

∫ 1

−1

[
x(1 + x2) + (1 + x2)2 − x(2x2)− (2x2)2

]
dx

=

∫ 1

−1

(
−3x4 − x3 + 2x2 + x+ 1

)
dx

=

[
−3x5

5
− x4

4
+

2x3

3
+

x2

2
+ x

]1
−1

=
32

15
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EXAMPLE 6.6

Let R be the region in the xy-plane bounded by the curves y = x3 and y =
√
x:

Image credit: UMich

Evaluate
∫∫

R
x2y dA.

Solution:

We first identify the region R in the xy-plane. The curves y = x3 and y =
√
x intersect

when x3 =
√
x ⇒ x(x5 − 1) = 0. Thus, the points of intersection occur at x = 0 and x = 1.

Between these bounds, y = x3 is the lower curve and y =
√
x is the upper curve. Therefore,

the region is of Type I:

R = {(x, y) | 0 ≤ x ≤ 1, x3 ≤ y ≤
√
x}.

We now write the double integral as an iterated integral:

∫∫
R

x2y dA =

∫ 1

0

∫ √
x

x3

x2y dy dx
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EXAMPLE 6.6 (CONTINUED)

We evaluate the inner integral by holding x constant:

∫ √
x

x3

x2y dy = x2

∫ √
x

x3

y dy = x2

[
1

2
y2
]y=√

x

y=x3

=
x2

2

(
x− x6

)
=

1

2

(
x3 − x8

)

Now integrate with respect to x:

∫∫
R

x2y dA =

∫ 1

0

1

2

(
x3 − x8

)
dx =

1

2

[
x4

4
− x9

9

]1
0

=
1

2

(
1

4
− 1

9

)
=

1

2
· 5

36
=

5

72

The inner integral gives the area of the slice at any x-value. Let’s visualize this:

The slice at x = 0.6. Image credit: UMich

As we let x go from 0 to 1, the slices will sweep out the entire volume of R
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EXAMPLE 6.7

Find the area of the region D ⊆ R2, where the ordered pairs (x, y) ∈ D satisfy the following
inequalities:

• y ≥ x2

• y ≤ 4x+ 12

• y ≤ 12− x

Solution:

We begin by analyzing the intersections of the curves:

• x2 = 4x+ 12 ⇒ x2 − 4x− 12 = 0 ⇒ x = −2 or x = 6

• 4x+ 12 = 12− x ⇒ 5x = 0 ⇒ x = 0

• x2 = 12− x ⇒ x2 + x− 12 = 0 ⇒ x = −4 or x = 3

Let’s visualize this through a plot featuring the two regions:

Here we have y = 4x+ 12 in red, y = x2 in blue, y = 12− x in green, region D1 in orange,
and region D2 in purple.

We divide the region D into two simpler subregions D1 and D2, and integrate over each to
get the expression for area A:

A(D) = A(D1) +A(D2) =

∫∫
D

1 dA =

∫∫
D1

1 dA+

∫∫
D2

1 dA
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EXAMPLE 6.7 (CONTINUED)

We begin with D1 = {(x, y) | −2 ≤ x ≤ 0, x2 ≤ y ≤ 4x+ 12}:

A1 =

∫ 0

−2

[∫ 4x+12

x2

1 dy

]
dx =

∫ 0

−2

(4x+ 12− x2) dx

=

∫ 0

−2

(−x2 + 4x+ 12) dx =

[
−x3

3
+ 2x2 + 12x

]0
−2

= (0)−
(
−−8

3
+ 8− 24

)
=

40

3

And then D2 = {(x, y) | 0 ≤ x ≤ 3, x2 ≤ y ≤ 12− x}:

A2 =

∫ 3

0

[∫ 12−x

x2

1 dy

]
dx =

∫ 3

0

(12− x− x2) dx

=

∫ 3

0

(−x2 − x+ 12) dx =

[
−x3

3
− x2

2
+ 12x

]3
0

=

(
−9− 9

2
+ 36

)
=

45

2

Finally,

A(D) = A(D1) +A(D2) =
40

3
+

45

2
=

215

6
units2.
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EXAMPLE 6.8

Evaluate the integral I =
∫∫

D
x
√
1 + y3 dA where D is the triangular region bounded by the

y-axis and the lines y = 1
3x and y = 2.

Solution:

We first sketch the region D. It lies between the line y = 1
3x and the horizontal line y = 2,

bounded on the left by x = 0. Solving y = 1
3x ⇒ x = 3y, so the right edge is x = 6 when

y = 2.

Image credit: UT Austin

If we integrate with respect to y first (vertical slices), we get

I =

∫ 6

0

(∫ 2

x/3

x
√
1 + y3 dy

)
dx

The inner integral
∫ √

1 + y3 dy cannot be easily evaluated, so let’s try the alternative.
We reverse the order by integrating with respect to x first (horizontal slices):

I =

∫ 2

0

(∫ 3y

0

x
√
1 + y3 dx

)
dy

Since y is constant in the inner integral,

=

∫ 2

0

√
1 + y3 ·

[
1
2x

2
]3y
0

dy =

∫ 2

0

9
2y

2
√
1 + y3 dy.

Let u = 1 + y3 ⇒ du = 3y2 dy ⇒ y2 dy = 1
3du.

I = 9
2 · 1

3

∫ 9

1

√
u du = 3

2 ·
[
2
3u

3/2
]9
1
=
[
u3/2

]9
1
= 93/2 − 1 = 27− 1 = 26
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Before we move on, here is a summary of the properties of double integrals: Let D ⊂ R2 and assume
that all of the following integrals exist.

1. Linearity with respect to addition∫∫
D

[f(x, y) + g(x, y)] dA =

∫∫
D

f(x, y) dA+

∫∫
D

g(x, y) dA

2. Linearity with respect to scalar multiplication∫∫
D

cf(x, y) dA = c

∫∫
D

f(x, y) dA where c is a constant

3. Monotonicity
If f(x, y) ≥ g(x, y) for all (x, y) ∈ D, then∫∫

D

f(x, y) dA ≥
∫∫

D

g(x, y) dA.

4. Additivity over regions
If D = D1 ∪D2, where D1 and D2 do not overlap (except perhaps on their boundaries), then∫∫

D

f(x, y) dA =

∫∫
D1

f(x, y) dA+

∫∫
D2

f(x, y) dA.

5. Area via integration
The area of the region D for a constant function f(x, y) = 1 is given by∫∫

D

1 dA = A(D).

6. Bounds inequality
If m ≤ f(x, y) ≤ M on D, then

mA(D) ≤
∫∫

D

f(x, y) dA ≤ MA(D).
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EXAMPLE 6.9

Evaluate the integral
∫∫

D
x2 dA where D is the diamond-shaped region bounded by the

lines y = 1− |x| and y = |x| − 1 within the square [−1, 1]× [−1, 1].

Image credit: Stewart

Solution:

We split D into two type I regions:

• Upper triangle: D1 = {(x, y) | −1 ≤ x ≤ 1, −|x|+ 1 ≤ y ≤ |x| − 1}

• Lower triangle: D2 = {(x, y) | −1 ≤ x ≤ 1, |x| − 1 ≤ y ≤ −|x|+ 1}

More precisely, we describe the regions as

D1 = {(x, y) | −1 ≤ x ≤ 0, x+ 1 ≤ y ≤ −x+ 1} ∪ {(x, y) | 0 ≤ x ≤ 1, −x+ 1 ≤ y ≤ x+ 1}
D2 = {(x, y) | −1 ≤ x ≤ 0, −x− 1 ≤ y ≤ x− 1} ∪ {(x, y) | 0 ≤ x ≤ 1, x− 1 ≤ y ≤ −x+ 1}

Now compute the double integral:

∫∫
D

x2 dA =

∫ 0

−1

∫ −x+1

x+1

x2 dy dx+

∫ 1

0

∫ x+1

−x+1

x2 dy dx

Each inner integral evaluates to x2 multipled by height. The height of the region in each
case is 2(1− |x|), so we have

=

∫ 0

−1

x2(−x+ 1− (x+ 1)) dx+

∫ 1

0

x2(x+ 1− (−x+ 1)) dx

=

∫ 0

−1

x2(−2x) dx+

∫ 1

0

x2(2x) dx = −2

∫ 0

−1

x3 dx+ 2

∫ 1

0

x3 dx

= −2

[
x4

4

]0
−1

+ 2

[
x4

4

]1
0

= −2

(
0− 1

4

)
+ 2

(
1

4
− 0

)
= 2 · 1

4
+ 2 · 1

4
=

1

2
+

1

2
= 1.

https://rhoclouds.github.io


https://rhoclouds.github.io 270

6.3 Double Integration in Polar Coordinates

There are going to be cases in which we try to integrate a function f : D ⊆ R2 → R where the
domain D ⊆ R2 is expressed in polar coordinates. For instance, if the region is circular, it would
be much easier to describe in polar coordinates. Recall that the polar coordinates (r, θ) of a point
are related to the rectangular coordinates (x, y) by the following equations:

r2 = x2 + y2

x = r cos θ

y = r sin θ

You may have used your intuition to conclude that working with polar coordinates won’t be different
from Cartesian coordinates because of your work in single-variable calculus. Indeed, the general
methods do not change; instead, we simply encode information using a different coordinate system.
As a matter of fact, we still use rectangles here. More specifically, we use polar rectangles. Polar
rectangles are regions such that

R = {(r, θ) | a ≤ r ≤ b, α ≤ θ ≤ β} .

In order to compute the double integral

∫∫
R

f(x, y) dA,

where R is a polar rectangle, we divide the interval [a, b] into m subintervals [ri−1, ri] of equal
width ∆r = (b− a)/m and we divide the interval [α, β] into n subintervals θj − 1, θj of equal width
∆θ = (β − α)/n. Then the circles r = ri and the rays θ = θj divide the polar rectangle R into the
small polar rectangles Ri,j as shown below:

Image credit: Stewart
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The center of the polar subrectangle,

Rij = {(r, θ) | ri−1 ≤ r ≤ ri, θj−1 ≤ θ ≤ θj} ,

has polar coordinates r∗i = 1
2 (ri−1 + ri) and θ∗j = 1

2 (θj−1 + θj). We can use the fact that the area

of a sector of a circle with radius r and central angle θ is 1
2r

2θ. We subtract the areas of these two
sectors with central angles ∆θ = θj − θj−1 to get the area of Ri,j :

∆Ai =
1

2
r2i∆θ − 1

2
r2i−1∆θ =

1

2
(r2i − r2i−1)∆θ =

1

2
(ri + ri−1)(ri − ri−1)∆θ = r∗i∆r∆θ

We now start with a Riemann sum approximation over polar rectangles. Suppose R is a polar
rectangle divided into subrectangles Ri,j , and the center of each subrectangle has polar coordinates
(r∗i , θ

∗
j ). Then, the rectangular coordinates are

x = r∗i cos θ
∗
j , y = r∗i sin θ

∗
j .

So a typical Riemann sum is

m∑
i=1

n∑
j=1

f(r∗i cos θ
∗
j , r

∗
i sin θ

∗
j ) · r∗i∆r∆θ.

If we define a new function g(r, θ) = f(r cos θ, r sin θ) · r, then the Riemann sum becomes

m∑
i=1

n∑
j=1

g(r∗i , θ
∗
j )∆r∆θ.

This is a Riemann sum for the double integral over the polar region R:

∫ b

a

∫ β

α

g(r, θ) dθ dr =

∫ b

a

∫ β

α

f(r cos θ, r sin θ) · r dθ dr

Therefore, we conclude with∫∫
R

f(x, y) dA =

∫ β

α

∫ b

a

f(r cos θ, r sin θ) · r dr dθ.
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If f is continuous on a polar rectangle R given by

R = {(r, θ) | 0 ≤ a ≤ r ≤ b, α ≤ θ ≤ β} ,

then the double integral becomes

∫∫
R

f(x, y) dA =

∫ β

α

∫ b

a

f(r cos θ, r sin θ) · r dr dθ.

Let’s now discuss an important idea. The above formula says that we can convert from rectangular
to polar coordinates in a double integral by writing x = r cos θ and y = r sin θ using the appropriate
limits of integration for r and θ. When we do this, dA is not just dr dθ. Notice how we actually
have rdr dθ. This extra r comes from what happens if we zoom in on a polar rectangle, the tiny
wedge-shaped sector of a circle. In Cartesian coordinates, these rectangles have area dx · dy. In
polar coordinates, the height of the wedge is indeed dr, but the width is not solely dθ. It is a curved
arc given by r dθ. Do not forget the r!
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EXAMPLE 6.10

Evaluate the integral I =
∫∫

D
(x+y) dA where D is the region in the first quadrant bounded

by the circle x2 + y2 = 9, the x-axis, and the y-axis.

Image credit: UT Austin

Solution:

While we could work this using Cartesian coordinates, the region is much easier using polar
coordinates. We simply have a circle of radius 3. Thus, our limits of integration are 0 ≤ r ≤ 3
and 0 ≤ θ ≤ π

2 . We will now convert the integrand using the substitutions x = r cos θ,
y = r sin θ, and dA = r dr dθ to get

f(x, y) = x+ y = r cos θ + r sin θ = r(cos θ + sin θ)

We now have the polar integral

I =

∫ π/2

0

∫ 3

0

r(cos θ + sin θ) · r dr dθ

=

∫ π/2

0

∫ 3

0

r2(cos θ + sin θ) dr dθ.
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EXAMPLE 6.10 (CONTINUED)

Let’s evaluate the inner integral:

∫ 3

0

r2(cos θ + sin θ) dr

= (cos θ + sin θ)

∫ 3

0

r2 dr

= (cos θ + sin θ) ·
[
1

3
r3
]3
0

= 9(cos θ + sin θ)

And now we evaluate the outer integral:

I =

∫ π/2

0

9(cos θ + sin θ) dθ

= 9

(∫ π/2

0

cos θ dθ +

∫ π/2

0

sin θ dθ

)

= 9(1 + 1) = 18
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EXAMPLE 6.11

Find the volume beneath the surface z = f(x, y) = 10 + xy and above the annular region

D = {(r, θ) | 2 ≤ r ≤ 4, 0 ≤ θ < 2π} .

Solution:

We are given a region described in polar coordinates, but the function is in rectangular form.
So we use x = r cos θ and y = r sin θ to get

f(r, θ) = 10 + r2 cos θ sin θ.

Using the identity sin(2θ) = 2 sin θ cos θ, we simplify:

f(r, θ) = 10 +
1

2
r2 sin(2θ)

To compute volume:

V =

∫∫
D

f(x, y) dA =

∫∫
D

(
10 +

1

2
r2 sin(2θ)

)
r dr dθ

=

∫ 2π

0

∫ 4

2

(
10 +

1

2
r2 sin(2θ)

)
r dr dθ

=

∫ 2π

0

[∫ 4

2

(
10r +

1

2
r3 sin(2θ)

)
dr

]
dθ

=

∫ 2π

0

[
5r2 +

1

8
r4 sin(2θ)

]4
2

dθ

=

∫ 2π

0

(
80− 20 +

[
1

8
(256− 16)

]
sin(2θ)

)
dθ

=

∫ 2π

0

(60 + 30 sin(2θ)) dθ

= 60 · 2π + 30 ·
∫ 2π

0

sin(2θ) dθ

= 120π.
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6.4 Applications of Double Integrals

Density: Suppose a lamina (a thin plate) occupies a region D ⊂ R2, and has a density function
ρ(x, y) in units of mass per unit area.

Similarly to with volume, we divide a rectangle into subrectangles. We approximate the mass of
each small rectangle as

∆m ≈ ρ(x∗
i , y

∗
j )∆A,

and then sum over all subrectangles:

m ≈
k∑

i=1

l∑
j=1

ρ(x∗
i , y

∗
j )∆A

Taking the limit as the partitions get finer yields

m = lim
k,l→∞

k∑
i=1

l∑
j=1

ρ(x∗
i , y

∗
j )∆A =

∫∫
D

ρ(x, y) dA.

This idea also works for other types of density. For example, if σ(x, y) is the charge density, then
the total charge is

Q =

∫∫
D

σ(x, y) dA.

Center of mass: The moment of a lamina about the x-axis is

Mx =

∫∫
D

y ρ(x, y) dA.

The moment about the y-axis is

My =

∫∫
D

x ρ(x, y) dA.

The coordinates of the center of mass (x̄, ȳ) are given by

x̄ =
My

m
=

1

m

∫∫
D

x ρ(x, y) dA
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and

ȳ =
Mx

m
=

1

m

∫∫
D

y ρ(x, y) dA,

where the total mass m is

m =

∫∫
D

ρ(x, y) dA.

The center of mass is an average of where particles lie in an object that you can safely use to
approximate the position where most of the mass is concentrated. Thus this formula makes sense.

Here we try to balance a lamina on a thin wall given by the line y = y0 where y0 is constant. The
lamina balances if and only if y0 = ȳ:

Image credit: UMich

If we want to balance the lamina on a specific point, it has to be on the center of mass (x̄, ȳ):

Image credit: UMich
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EXAMPLE 6.12

The lamina L is the type I region bounded above by the semicircle y =
√
1− x2 and below

by the x-axis, over the interval −1 ≤ x ≤ 1. Assume constant density ρ(x, y) = 1. Compute
the center of mass (x̄, ȳ).

Solution:

First, the total mass of the lamina is:

m =

∫∫
L

ρ(x, y) dA =

∫∫
L

1 dA

Since the lamina is a semicircle of radius 1, its area is half the area of a full circle π
2 .

Next, we compute x̄. Because the lamina is symmetric about the y-axis, we expect x̄ = 0:

x̄ =
1

m

∫∫
L

x dA =
1

m

∫ 1

−1

∫ √
1−x2

0

x dy dx

=
1

m

∫ 1

−1

x [y]
√
1−x2

0 dx =
1

m

∫ 1

−1

x
√
1− x2 dx

= − 1

3m
(1− x2)3/2

∣∣∣∣1
−1

= 0

Now for ȳ:

ȳ =
1

m

∫∫
L

y dA =
1

m

∫ 1

−1

∫ √
1−x2

0

y dy dx

=
1

m

∫ 1

−1

[
1

2
y2
]√1−x2

0

dx =
1

m

∫ 1

−1

1

2
(1− x2) dx

=
1

2m

∫ 1

−1

(1− x2) dx =
1

2m

[
x− x3

3

]1
−1

=
1

2m

((
1− 1

3

)
−
(
−1 +

1

3

))
=

2

3m

Substitute m = π
2 to get ȳ = 8

3π . Therefore, the center of mass is at

(x̄, ȳ) =

(
0,

8

3π

)
.
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Moment of inertia: This is where a particle of mass m about an axis is defined as mr2, where r
is the distance from the particle to the axis. We have

Ix = lim
m,n→∞

m∑
i=1

n∑
j=1

(y∗ij)
2 ρ(x∗

i,j , y
∗
i,j)∆A =

∫∫
D

y2 ρ(x, y) dA

Iy = lim
m,n→∞

m∑
i=1

n∑
j=1

(x∗
i,j)

2 ρ(x∗
i,j , y

∗
i,j)∆A =

∫∫
D

x2 ρ(x, y) dA

I0 = lim
m,n→∞

m∑
i=1

n∑
j=1

[
(x∗

i,j)
2 + (y∗i,j)

2
]
ρ(x∗

i,j , y
∗
i,j)∆A =

∫∫
D

(x2 + y2) ρ(x, y) dA

where x denotes the moment of inertia of the lamina about the x-axis, y denotes the moment of
inertia of the lamina about the y-axis, and 0 denotes the moment of inertia about the origin. This
is also called the polar moment of iniertia. Note that I0 = Ix + Iy.

Surface area: Let z = f(x, y) be a function defined over a region D ⊂ R2. We wish to compute
the surface area of the graph of this function above the domain D.

To approximate the surface, we have a similar process of dividing D into small rectangles Ri,j of
area ∆A = ∆x∆y with Pi,j = (xi, yj , f(xi, yj)) as a point on the surface above each subrectangle.
We approximate the surface above each rectangle with a tangent plane at that point. Let’s derive
this:

Define two tangent vectors to the surface at Pi,j :

a⃗ = ∆x i+ fx(xi, yj)∆xk

b⃗ = ∆y j+ fy(xi, yj)∆y k

The area of the parallelogram spanned by a⃗ and b⃗ is

∆Ti,j = ∥a⃗× b⃗∥ =
√
[fx(xi, yj)]2 + [fy(xi, yj)]2 + 1 ·∆A.

Summing over all rectangles and taking the limit gives the surface area:

A(S) = lim
∆x,∆y→0

m∑
i=1

n∑
j=1

∆Tij =

∫∫
D

√
1 +

(
∂f

∂x

)2

+

(
∂f

∂y

)2

dA

given that f(x, y) has continuous partial derivatives on a region D.
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This is a generalization of the arc length formula from single-variable calculus:

L =

∫ b

a

√
1 +

(
dy

dx

)2

dx

To better understand surface area, it’s helpful to compare it to simpler geometric quantities:

• Length on the x-axis:

∫ b

a

dx

• Arc length in the xy-plane for a curve y = f(x):

∫ b

a

ds =

∫ b

a

√
1 + (f ′(x))

2
dx

• Area in the xy-plane: ∫∫
R

dA

• Surface area in space for a graph z = f(x, y):

∫∫
R

dS =

∫∫
R

√
1 +

(
∂f

∂x

)2

+

(
∂f

∂y

)2

dA

In other words, just as arc length adjusts horizontal length to account for slope, surface area adjusts
flat area by accounting for slopes in both the x and y directions.
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EXAMPLE 6.14

Compute the area of the region where x ≥ 0 outside the circle r = r1(θ) =
√
2 and inside

the lemniscate r2 = (r2(θ))
2 = 4 cos(2θ).

Solution:

To compute the area of a region in R2, we set f(r, θ) = 1. Now we must we determine the
bounds for r and θ.

To find where the circle and lemniscate intersect, we solve:

2 = 4 cos(2θ) ⇒ cos(2θ) =
1

2
⇒ 2θ = ±π

3
⇒ θ = ±π

6
.

Hence, the region lies between r =
√
2 and r = 2

√
cos(2θ), and between −π

6 ≤ θ ≤ π
6 :

D =
{
(r, θ) |

√
2 ≤ r ≤ 2

√
cos(2θ), −π

6
≤ θ ≤ π

6

}
.

We now compute:

A =

∫∫
D

f(r, θ) dA =

∫∫
D

1 · r dr dθ.

Compute the inner integral:

A(θ) =

∫ 2
√

cos(2θ)

√
2

r dr =
1

2
r2
∣∣∣∣2
√

cos(2θ)

√
2

=
1

2

[
(2
√

cos(2θ))2 − (
√
2)2
]

=
1

2
(4 cos(2θ)− 2) = 2 cos(2θ)− 1.

Integrate over θ:

A =

∫ π
6

−π
6

(2 cos(2θ)− 1) dθ = sin(2θ)− θ|
π
6

−π
6

=
(
sin
(π
3

)
− π

6

)
−
(
sin
(
−π

3

)
+

π

6

)
= 2 sin

(π
3

)
− π

3
.

= 2 ·
√
3

2
− π

3
=

√
3− π

3
.
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EXAMPLE 6.14

Find the area of the portion of the surface f(x, y) = 1−x2+ y that lies above the triangular
region with vertices (1, 0), (0,−1), (0, 1). Please run the Python code for the following graph
to visualize this problem for yourself.

ex6point14.py

Solution:

We will compute surface area using this formula:

A =

∫∫
R

√
1 +

(
∂f

∂x

)2

+

(
∂f

∂y

)2

dA

We compute the partial derivatives ∂f
∂x = −2x and ∂f

∂y = 1 and plug them in:

A =

∫∫
R

√
1 + 4x2 + 1 dA =

∫∫
R

√
2 + 4x2 dA

From the region description, the bounds of integration are 0 ≤ x ≤ 1 and x− 1 ≤ y ≤ 1− x.


import numpy as np

import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d import Axes3D



def f(x, y):

    return 1 - x**2 + y



x_vals = np.linspace(0, 1, 200)

y_vals = np.linspace(-1, 1, 200)

X, Y = np.meshgrid(x_vals, y_vals)

Z = f(X, Y)



mask = (Y >= X - 1) & (Y <= 1 - X)

Z_masked = np.where(mask, Z, np.nan)



fig = plt.figure(figsize=(10, 7))

ax = fig.add_subplot(111, projection='3d')

ax.plot_surface(X, Y, Z_masked, cmap='viridis', edgecolor='k', linewidth=0.2, alpha=0.9)



triangle_x = [0, 0, 1]

triangle_y = [-1, 1, 0]

triangle_z = [0, 0, 0]

ax.plot_trisurf(triangle_x, triangle_y, triangle_z, color='cyan', alpha=0.4)



ax.set_title(r"Surface $z = 1 - x^2 + y$ over triangular region", fontsize=14)

ax.set_xlabel("$x$")

ax.set_ylabel("$y$")

ax.set_zlabel("$z$")

ax.view_init(elev=30, azim=45)

plt.tight_layout()



plt.show()
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EXAMPLE 6.14 (CONTINUED)

Let’s now integrate:

A =

∫ 1

0

∫ 1−x

x−1

√
2 + 4x2 dy dx

Since
√
2 + 4x2 is constant in y:

=

∫ 1

0

(2− 2x)
√
2 + 4x2 dx =

∫ 1

0

(
2
√
2 + 4x2 − 2x

√
2 + 4x2

)
dx

We now integrate both terms separately. The antiderivative is

∫ (
2
√
2 + 4x2

)
dx = x

√
2 + 4x2 + ln

(
x+

√
2 + 4x2

)
=

(2 + 4x2)3/2

6
.

Let’s now put everything together:

A =

[
x
√
2 + 4x2 + ln

(
x+

√
2 + 4x2

)
− (2 + 4x2)3/2

6

]1
0

Evaluate at the bounds:

=

(
√
6 + ln(2 +

√
6)− 6

√
6

6

)
−

(
0 + ln

√
2− 2

√
2

6

)

= ln(2 +
√
6)− ln

√
2 +

1

3

√
2

Therefore, the area is:

A = ln

(
2 +

√
6√

2

)
+

1

3

√
2 = 1.618 units2
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Probability: In single-variable calculus, you may have worked with the probability density function
f(x) of a continuous random variable X which is a nonnegative function satisfying

∫ ∞

−∞
f(x) dx = 1.

Then, for any interval [a, b], the probability that X lies between a and b is given by

P (a ≤ X ≤ b) =

∫ b

a

f(x) dx.

Now consider two continuous random variables X and Y , such as the height and weight of an
individual, or the lifetimes of two machine parts. Their joint behavior is modeled by a joint density
function f(x, y) which satisfies:

f(x, y) ≥ 0 for all (x, y) ∈ R2 and

∫∫
R2

f(x, y) dA = 1.

The first property of a joint density function makes sense because negative probability is not a
thing. The second is because of the fact that if you add up every possibility, you would get 100%
or 1.

Then, the probability that the pair (X,Y ) lies within a region D ⊂ R2 is given by

P ((X,Y ) ∈ D) =

∫∫
D

f(x, y) dA.

If the region D is a rectangular box defined by a ≤ x ≤ b and c ≤ y ≤ d, then the probability that
X lies between a and b becomes a double integral:

P (a ≤ X ≤ b, c ≤ Y ≤ d) =

∫ b

a

∫ d

c

f(x, y) dy dx

We say that two probability distributionsX with density function f1(x) and Y with density function
f2(y) are independent of each other, or independent random variables, if their joint density function
satisfies

f(x, y) = f1(x)f2(x).

A common real-world probability model is the exponential distribution. It is often used to model
random waiting times, such as the time it takes for a radioactive isotope to decay or when a customer
enters a store.
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The exponential density function is given by

f(t) =

{
0 if t < 0

µ−1e−t/µ if t ≥ 0

where µ is the mean waiting time.

If X is a random variable with probability density function f , then its mean is

µ =

∫ ∞

−∞
xf(x) dx.

Now if X and Y are random variables with joint density function f , we define the X-mean and
Y -mean, also called the expected values of X and Y , to be

µ1 =

∫∫
R2

xf(x, y) dA

and

µ2 =

∫∫
R2

yf(x, y) dA.

Notice how closely the expressions for µ1 and µ2 resemble the moments Mx and My of a lamina with
density function ρ. In fact, we can think of probability as being like continuously distributed mass.
This is because both rely on the idea of a density function. And because the total “probability
mass” adds up to 1, the expressions for x̄ and ȳ show that we can think of the expected values of
X and Y , µ1 and µ2, as the coordinates of the “center of mass” of the probability distribution.

We say that a single random variable is normally distributed if its probability density function is of
the form

f(x) =
1

σ
√
2π

e−(x−µ)2/(2σ2)

where µ is the mean and σ is the standard deviation.
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The graph of a bivariate normal joint density function

A visually interesting visualization of a bivariate normal joint density function with its marginal
densities as histograms on the sides
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EXAMPLE 6.16

The manager of a movie theater determines that the average wait time for a moviegoer
to buy a ticket is 10 minutes, and the average wait time to buy popcorn is 5 minutes.
Assuming these are independent exponential wait times, what is the probability that the
total wait time is less than 20 minutes?

Solution:

Let X be the time to buy a ticket and Y be the time to buy popcorn. These are modeled as
such:

f1(x) =

{
0 if x < 0
1
10e

−x/10 if x ≥ 0
, f2(y) =

{
0 if y < 0
1
5e

−y/5 if y ≥ 0

x

y

D x+ y = 20

20

20

0

Because X and Y are independent, their joint density is written as a product:

f(x, y) = f1(x)f2(y) =

{
1
50e

−x/10e−y/5 if x ≥ 0, y ≥ 0

0 otherwise

We want to find the probability that X + Y < 20. This is the probability that the point
(x, y) lies in the region

D =
{
(x, y) ∈ R2 | x ≥ 0, y ≥ 0, x+ y < 20

}
.
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EXAMPLE 6.16 (CONTINUED)

So we compute

P (X + Y < 20) =

∫∫
D

f(x, y) dA =

∫ 20

0

∫ 20−x

0

1

50
e−x/10e−y/5 dy dx

=
1

50

∫ 20

0

e−x/10

[∫ 20−x

0

e−y/5 dy

]
dx.

Integrate the inner integral:

∫ 20−x

0

e−y/5 dy = −5e−y/5
∣∣∣20−x

0
= 5

(
1− e−(20−x)/5

)
=

1

50

∫ 20

0

e−x/10 · 5
(
1− e−(20−x)/5

)
dx =

1

10

∫ 20

0

e−x/10
(
1− e−4+x/5

)
dx

=
1

10

∫ 20

0

(
e−x/10 − e−4e−x/10ex/5

)
dx =

1

10

∫ 20

0

(
e−x/10 − e−4ex/10

)
dx

Finally,

=
1

10

[
−10e−x/10 − 10

e4
ex/10

]20
0

=
1

10

(
−10e−2 − 10

e4
e2 + 10 +

10

e4

)
= 1 + e−4 − 2e−2 = 0.7476.

Therefore around 75% of the people at the theater will wait less than 20 minutes before
getting to their seats.
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7 Triple Integrals

We now extend to integration for functions of three variables that three-dimensional solids.

7.1 Triple Integration Over General Regions

The way we use area to interpret single and double integrals can actually get in the way of under-
standing triple integrals. Instead, try viewing integration as a weighted sum as we did in Section
6.4.

Let w = f(x, y, z) be a real-valued function of three variables, defined over a region D ⊆ R3. That
is,

f : D ⊆ R3 → R.

Assume that D is a closed and bounded region in R3. To construct the triple integral, we write

∫
D

f dw =

∫∫∫
D

f(x, y, z) dV.

We move away from interpreting f(x∗
k, y

∗
k, z

∗
k) as a “height” and instead treat it more generally as

a weight assigned to a small volume.

We can partition the region D ⊆ R3 by slicing it with collections of planes:

• Planes parallel to the yz-plane in the direction n⃗1 = α⟨1, 0, 0⟩

• Planes parallel to the xz-plane in the direction n⃗2 = α⟨0, 1, 0⟩

• Planes parallel to the xy-plane in the direction n⃗3 = α⟨0, 0, 1⟩

This divides D into small rectangular boxes (subregions). We label each box with an index k =
1, 2, . . . , n, where n ∈ N, and enumerate only those boxes fully contained in D.

Let the kth box have side lengths ∆xk, ∆yk, and ∆zk. Then its volume is

∆Vk = ∆xk ·∆yk ·∆zk

We sample the function value within each box using a point (x∗
k, y

∗
k, z

∗
k) in the box and interpret

f(x∗
k, y

∗
k, z

∗
k) as the ”weight” on that subregion.
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We approximate the triple integral using the Riemann sum

n∑
k=1

f(x∗
k, y

∗
k, z

∗
k) ·∆Vk.

To formalize convergence, define the diagonal length of the kth box as

dk =
√
(∆xk)2 + (∆yk)2 + (∆zk)2.

Let ∆ = max{d1, d2, . . . , dn}. Then the triple integral is defined as the limit

∫∫∫
D

f(x, y, z) dV = lim
∆→0

n∑
k=1

f(x∗
k, y

∗
k, z

∗
k) ·∆Vk.

As the maximum diagonal length ∆ → 0, the number of boxes n → ∞, and the approximation
becomes more accurate.

The triple integral of f over the box B is

∫∫∫
B

f(x, y, z) dV = lim
l,m,n→∞

l∑
i=1

m∑
j=1

n∑
k=1

f(x∗
ijk, y

∗
ijk, z

∗
ijk)∆V

if this limit exists.

Just as with double integrals, Fubini’s theorem also applies here:

If f is continuous on the rectangular box

B = [a, b]× [c, d]× [r, s],

then

∫∫∫
B

f(x, y, z) dV =

∫ s

r

∫ d

c

∫ b

a

f(x, y, z) dx dy dz.
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EXAMPLE 7.1

Evaluate the triple integral∫∫∫
D

(x+ yz2) dx dy dz where D = [−1, 5]× [2, 4]× [0, 1]

Solution:

We integrate with respect to x, then y, then z:

∫ 1

0

∫ 4

2

∫ 5

−1

(x+ yz2) dx dy dz

Integrate with respect to x:

=

∫ 1

0

∫ 4

2

[
x2

2
+ xyz2

]x=5

x=−1

dy dz

=

∫ 1

0

∫ 4

2

[
12 + 6yz2

]
dy dz

Integrate with respect to y:

=

∫ 1

0

[
12y + 6 · y

2

2
z2
]y=4

y=2

dz

=

∫ 1

0

[
24 + 36z2

]
dz

Integrate with respect to z:

=

[
24z + 36 · z

3

3

]z=1

z=0

= 24 + 12 = 36
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EXAMPLE 7.2

Evaluate the triple integral∫∫∫
B

x2yz dV where B = [−2, 1]× [0, 3]× [1, 5].

Image credit: Strang & Herman

Solution:

You can integrate in any order you want. I will pick to first integrate y, then x, and lastly z.

∫∫∫
B

x2yz dV =

∫ 5

1

∫ 1

−2

∫ 3

0

x2yz dy dx dz

=

∫ 5

1

∫ 1

−2

[
x2 · y

2

2
· z
]3
0

dx dz =

∫ 5

1

∫ 1

−2

(
9

2
x2z

)
dx dz

=

∫ 5

1

9z

2

[
x3

3

]1
−2

dz =

∫ 5

1

9z

2

(
13 − (−2)3

3

)
dz =

∫ 5

1

9z

2
· 9
3
dz

=

∫ 5

1

27z

2
dz =

[
27z2

4

]5
1

=
27

4
(25− 1) =

27 · 24
4

= 162

So far, we’ve focused on triple integrals over rectangular boxes. But in practice, many solids do not
have flat or rectangular boundaries. We will now generalize triple integrals to any three-dimensional
solid.
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We start by defining a new function F over a rectangular box B in a general region E such that

F (x, y, z) =

{
f(x, y, z) if (x, y, z) ∈ E

0 otherwise
.

Then we define the integral of f over E as

∫∫∫
E

f(x, y, z) dV =

∫∫∫
B

F (x, y, z) dV.

This definition works as long as f is continuous and the boundary of E is reasonably smooth.

Type I Region: A solid region E is said to be type I if it lies between the graphs of two
continuous functions of x and y:

E = {(x, y, z) | (x, y) ∈ D, u1(x, y) ≤ z ≤ u2(x, y)}

where D is the projection of E onto the xy-plane.

This is the general form of a triple integral over a type I region:

∫∫∫
E

f(x, y, z) dV =

∫∫
D

[∫ u2(x,y)

u1(x,y)

f(x, y, z) dz

]
dA

A type I solid region. Image credit: Strang & Herman
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Type II Region: A solid region E is said to be type II if it lies between the graphs of two
continuous functions of y and z:

E = {(x, y, z) | (y, z) ∈ D, u1(y, z) ≤ x ≤ u2(y, z)}

where D is the projection of E onto the yz-plane.

This is the general form of a triple integral over a type II region:

∫∫∫
E

f(x, y, z) dV =

∫∫
D

[∫ u2(y,z)

u1(y,z)

f(x, y, z) dx

]
dA

A type II solid region. Image credit: Strang & Herman
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Type III Region: A solid region E is said to be type III if it lies between the graphs of two
continuous functions of x and z:

E = {(x, y, z) | (x, z) ∈ D, u1(x, z) ≤ y ≤ u2(x, z)}

where D is the projection of E onto the xz-plane.

This is the general form of a triple integral over a type III region:

∫∫∫
E

f(x, y, z) dV =

∫∫
D

[∫ u2(x,z)

u1(x,z)

f(x, y, z) dy

]
dA

A type III solid region. Image credit: Stewart
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EXAMPLE 7.3

Evaluate the triple integral
∫∫∫

E
(5x − 3y) dV , where E is the tetrahedron bounded by the

coordinate planes and the plane x+ y + z = 1.

Image credit: Strang & Herman

Solution:

We first identify the projection of E onto the xy-plane. The region can be described as
E = {(x, y, z) | 0 ≤ x ≤ 1, 0 ≤ y ≤ 1− x, 0 ≤ z ≤ 1− x− y}. Hence, the triple integral
becomes

∫∫∫
E

(5x− 3y) dV =

∫ 1

0

∫ 1−x

0

∫ 1−x−y

0

(5x− 3y) dz dy dx.

We begin by integrating with respect to z:

∫ 1−x−y

0

(5x− 3y) dz = (5x− 3y)(1− x− y)

Now integrate with respect to y:

∫ 1−x

0

(5x− 3y)(1− x− y) dy =
1

2
(x− 1)2(6x− 1)

We can integrate
∫ 1

0
1
2 (x− 1)2(6x− 1) dx by expanding the integrand to 6x3− 13x2+8x− 1:

∫ 1

0

1

2
(6x3 − 13x2 + 8x− 1) dx =

1

2

[
3x4

2
− 13x3

3
+ 4x2 − x

]1
0

=
1

12
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Average Value of a Function of Three Variables

If f(x, y, z) is integrable over a solid bounded region E with positive volume V (E), then the
average value of the function is

favg =
1

V (E)

∫∫∫
E

f(x, y, z) dV.

Note that the volume is

V (E) =

∫∫∫
E

1 dV.

Many of the applications introduced in Section 6.4, particularly those related to physics and
engineering, require triple integrals. If you have a physical quality that relies on volume, triple
integrals are probably the way to go.

Let D ⊂ R3 be a solid region, and let the mass density at any point (x, y, z) ∈ D be given by the
function ρ(x, y, z). Then the total mass of the solid is given by

m =

∫∫∫
D

ρ(x, y, z) dV.

Moments:

Myz =

∫∫∫
D

x ρ(x, y, z) dV

Mxz =

∫∫∫
D

y ρ(x, y, z) dV

Mxy =

∫∫∫
D

z ρ(x, y, z) dV

Center of mass coordinates:

x̄ =
Myz

m
, ȳ =

Mxz

m
, z̄ =

Mxy

m
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Moments of inertia:

Ix =

∫∫∫
D

(y2 + z2) ρ(x, y, z) dV

Iy =

∫∫∫
D

(x2 + z2) ρ(x, y, z) dV

Iz =

∫∫∫
D

(x2 + y2) ρ(x, y, z) dV

where Ixy = Ix + Iy, Ixz = Ix + Iz, and Iyz = Iy + Iz.
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EXAMPLE 7.4

Find the moments of inertia about the x- and y-axes for the solid region lying between
the hemisphere z =

√
4− x2 − y2 and the xy-plane, given that the density at (x, y, z) is

proportional to the distance between (x, y, z) and the xy-plane.

Image credit: Larson & Edwards

Solution.

The density of the region is given by ρ(x, y, z) = kz.
By symmetry, Ix = Iy, so we only need to compute one of them. We will go with the order
dz, then dy, and lastly dx.

Ix =

∫∫∫
Q

(y2 + z2)ρ(x, y, z) dV =

∫∫∫
Q

(y2 + z2)(kz) dz dy dx

= k

∫ 2

−2

∫ √
4−x2

−
√
4−x2

∫ √
4−x2−y2

0

(y2 + z2)z dz dy dx

= k

∫ 2

−2

∫ √
4−x2

−
√
4−x2

[
y2z2

2
+

z4

4

]√4−x2−y2

0

dy dx
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EXAMPLE 7.4 (CONTINUED)

= k

∫ 2

−2

∫ √
4−x2

−
√
4−x2

[
y2(4− x2 − y2)

2
+

(4− x2 − y2)2

4

]
dy dx

=
k

4

∫ 2

−2

∫ √
4−x2

−
√
4−x2

[
(4− x2)2 − y4

]
dy dx

=
k

4

∫ 2

−2

[
(4− x2)2y − y5

5

]√4−x2

−
√
4−x2

dx

=
2k

4

∫ 2

−2

[
(4− x2)2 ·

√
4− x2 − (4− x2)5/2

5

]
dx =

4k

5

∫ 2

−2

(4− x2)5/2dx

Using the substitution x = 2 sin θ, we convert the integral

∫ 2

−2

(4− x2)5/2 dx

into a cosine power integral:

= 4k ·
∫ 2

0

(4− x2)5/2 dx = 4k · 64
∫ π/2

0

cos6 θ dθ

We now apply the standard identity for even powers of cosine:

∫ π/2

0

cosn θ dθ =
(n− 1)(n− 3) · · · 1

n(n− 2) · · · 2
· π
2

For n = 6, we get:

∫ π/2

0

cos6 θ dθ =
5 · 3 · 1
6 · 4 · 2

· π
2
=

15

48
· π
2
=

5π

32

Finally,

Ix = Iy = 4k · 64 · 5π
32

=
256k

5
· 5π
32

= 8kπ.
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7.2 Triple Integration in Cylindrical and Spherical Coordinates

We can encode domain D ⊆ R3 with cylindrical coordinates. The reason we do this is because
there are many solids that are far easier to represent with cylindrical coordinates as opposed to
Cartesian or polar. Additionally, it also makes some triple integrals much easier to compute.

A point P in cylindrical coordinates is represented by the ordered triple:

P = (r, θ, z)

where r ≥ 0 is the radial distance from the origin to the projection of P onto the xy-plane, θ ∈ [0, 2π)
is the angle measured from the positive x-axis to the projection of P onto the xy-plane, and z ∈ R
is the height of the point above the xy-plane.

We interpret this coordinate system as an extension of the polar coordinate system to three dimen-
sions, where the first two coordinates (r, θ) describe the position of the projection P ∗ of the point
onto the xy-plane, and the third coordinate z encodes the vertical height.

Thus, in cylindrical coordinates, a region D ⊂ R3 can be described as

D = {(r, θ, z) | r ∈ Ir, θ ∈ Iθ, z ∈ Iz} ,

where Ir is the interval for radius r, Iθ is the interval for angle θ, and Iz is the interval for height z.

Cylindrical coordinates are essentially polar coordinates with an added z-component.

https://rhoclouds.github.io


https://rhoclouds.github.io 302

Let’s use this system to create some regions in R3:

• All of space:

R3 = {(r, θ, z) | 0 ≤ r < ∞, 0 ≤ θ < 2π, z ∈ R}

• A hollow cylinder centered at the z-axis with radius a and height h2 − h1:

C = {(r, θ, z) | r = a, h1 ≤ z ≤ h2, 0 ≤ θ ≤ 2π)}

• Cylindrical shell (annular region):

CS = {(r, θ, z) | a < r ≤ b, h1 ≤ z ≤ h2, 0 ≤ θ ≤ 2π}

• Positive yz-plane (i.e., a slice at θ = 0 with n⃗ = ⟨1, 0, 0⟩):

Pyz = {(r, θ, z) | θ = 0, r ≥ 0, z ∈ R}

• Positive xz-plane (i.e., a slice at θ = π
2 with n⃗ = ⟨0, 1, 0⟩):

Pxz =
{
(r, θ, z) | θ =

π

2
, r ≥ 0, z ∈ R

}
• Positive xy-plane (horizontal slice at z = 0 with n⃗ = ⟨0, 0, 1⟩):

Pxy = {(r, θ, z) | z = 0}

• Horizontal plane at height h with n⃗ = ⟨0, 0, 1⟩ through point (0, 0, h:

P = {(r, θ, z) | z = h}

• Vertical half-plane at fixed angle θ0:

P = {(r, θ, z) | θ = θ0}

• Half-cone with vertex at the origin with linear height function z = z(r) = ar where height is
a function of radius:

C = {(r, θ, z) | z = ar, a ∈ R, r ≥ 0, 0 ≤ θ ≤ 2π}

To convert between rectangular and cylindrical coordinates, we use the following relationships:
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• From rectangular to cylindrical, use these:

x = r cos θ

y = r sin θ

z = z

• From cylindrical to rectangular, use these:

r2 = x2 + y2

tan θ =
y

x
z = z

This table summarizes common surfaces in Cartesian coordinates and their equivalents in cylindrical
coordinates. These substitutions can help you evaluate triple integrals over regions bounded by these
surfaces:

Circular cylinder Circular cone Sphere Paraboloid

Rectangular x2 + y2 = c2 z2 = c2(x2 + y2) x2 + y2 + z2 = c2 z = c(x2 + y2)

Cylindrical r = c z = cr r2 + z2 = c2 z = cr2
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And now we introduce the formula:

Suppose that E is a type I region whose projection D onto the xy-plane is naturally described
using polar coordinates. In particular, suppose that f is continuous and

E = {(x, y, z) | (x, y) ∈ D, u1(x, y) ≤ z ≤ u2(x, y)}

where D is given in polar coordinates as

D = {(r, θ) | α ≤ θ ≤ β, h1(θ) ≤ r ≤ h2(θ)} .

Then the triple integral in cylindrical coordinates becomes

∫∫∫
E

f(x, y, z) dV =

∫ β

α

∫ h2(θ)

h1(θ)

∫ u2(r cos θ,r sin θ)

u1(r cos θ,r sin θ)

f(r cos θ, r sin θ, z) r dz dr dθ.

Image credit: Stewart
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EXAMPLE 7.5

A solid region E lies within the cylinder x2 + y2 = 1, below the plane z = 4, and above the
paraboloid z = 1 − x2 − y2. The density at any point is proportional to its distance from
the z-axis. Find the mass of E.

Solution:

In cylindrical coordinates, the cylinder is described by r = 1, and the paraboloid becomes
z = 1− r2. So we can express the region as

E =
{
(r, θ, z) | 0 ≤ θ ≤ 2π, 0 ≤ r ≤ 1, 1− r2 ≤ z ≤ 4

}
.

Since the density is proportional to the distance from the z-axis, we have

f(x, y, z) = K
√

x2 + y2 = Kr.

where K is the proportionality constant.
Using the cylindrical form of the triple integral, the mass is

m =

∫∫∫
E

Kr dV =

∫ 2π

0

∫ 1

0

∫ 4

1−r2
(Kr) r dz dr dθ.

=

∫ 2π

0

∫ 1

0

Kr2
[
4− (1− r2)

]
dr dθ = K

∫ 2π

0

dθ

∫ 1

0

(3r2 + r4)dr

= 2πK

[
r3

1
+

r5

5

]1
0

=
12πK

5
.
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We now move on to another coordinate system in R3 that uses spherical coordinates. In spherical
coordinates, every point is encoded as such:

P (ρ, ϕ, θ)

where ρ controls the distance from P to the origin (radius), ϕ represents the angle between the
positive z-axis and the line segment connecting the origin to P , and θ measures rotation about the
z-axis relative to the positive x-axis. While ρ and ϕ are new, θ is the same angle in cylindrical
coordinates.

In spherical coordinates, all of space is defined as

R3 = {(ρ, ϕ, θ) | 0 ≤ ρ < ∞, 0 ≤ ϕ ≤ π, 0 ≤ θ < 2π} .

Image credit: Strang & Herman

For instance, a sphere centered at the origin with radius c has the equation ρ = c, θ = c represents
a half-plane, and ϕ = c represents a half-cone.
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• Use these for converting from spherical to rectangular:

x = ρ sinϕ cos θ

y = ρ sinϕ sin θ

z = ρ cosϕ

• Use these for converting from rectangular to spherical:

ρ2 = x2 + y2 + z2

θ = tan−1
(y
x

)
ϕ = cos−1

(
z√

x2 + y2 + z2

)

The distance formula gives ρ2 = x2 + y2 + z2, which is used for converting from rectangular to
spherical coordinates.

Instead of a rectangular box, we use a spherical wedge:

E = {(ρ, θ, ϕ) | a ≤ ρ ≤ b, α ≤ θ ≤ β, c ≤ ϕ ≤ d}

where a ≥ 0 β − α ≤ 2π, and d − c ≤ π. If we divide up E into small spherical wedges Ei,j,k by
means of equally spaced spheres ρ = ρ, half-planes θ = θj , and half-cones ϕ = ϕk. The spherical
wedge can be approximated as a rectangular box with its dimensions being the arcs of circles.

Image credit: Strang & Herman

The volume of each small wedge is:

∆Vijk ≈ (∆ρ)(ρi∆ϕ)(ρi sinϕk∆θ) = ρ2i sinϕk ∆ρ∆θ∆ϕ
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or through the mean value theorem, the volume is given exactly by

∆Vijk = ρ̃2i sin ϕ̃
2
k ∆ρ∆θ∆ϕ

where P (ρ̃i, ϕ̃i, θϕi) is some point in Ei,j,k. We will will denote the rectangular coordinate version
of these as P (x∗

i,j,k, y
∗
i,j,k, z

∗
i,j,k).

So the triple integral becomes

∫∫∫
E

f(x, y, z) dV = lim
m,n,p→∞

m∑
i=1

n∑
j=1

p∑
k=1

f(x∗
i,j,k, y

∗
i,j,k, z

∗
i,j,k)∆Vi,j,k

= lim
l,m,n→∞

l∑
i=1

m∑
j=1

n∑
k=1

f
(
ρ̃i sin ϕ̃k cos θ̃j , ρ̃i sin ϕ̃k sin θ̃j , ρ̃i cos ϕ̃k

)
ρ̃2i sin ϕ̃k ∆ρ∆θ∆ϕ.

which is a Riemann sum for

P (ρ, θ, ϕ) = f (ρ sinϕ cos θ, ρ sinϕ sin θ, ρ cosϕ) ρ2 sinϕ.

And now we will put this all together into the following formula:

Triple Integration in Spherical Coordinates∫∫∫
E

f(x, y, z) dV =

∫ d

c

∫ β

α

∫ b

a

f (ρ sinϕ cos θ, ρ sinϕ sin θ, ρ cosϕ) ρ2 sinϕdρ dθ dϕ

where

E = {(ρ, θ, ϕ) | a ≤ ρ ≤ b, α ≤ θ ≤ β, c ≤ ϕ ≤ d} .

Spheres are symmetric in all directions from the center which can make the spherical coordinate
system convenient when the origin is the central point. On the other hand, cylindrical coordinates
are best when symmetry is around the z-axis. In addition to the actual solid you are working with,
keep this in mind when choosing to use cylindrical coordinates or spherical coordinates.

Fubini’s theorem of course applies to integrals in spherical coordinates too.
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EXAMPLE 7.6

Use (a) rectangular, (b) cylindrical, and (c) spherical coordinates to set up triple integrals
for finding the volume of the region inside the sphere x2 + y2 + z2 = 4 but outside the
cylinder x2 + y2 = 1.

Solution:

(a)

V =

∫ 2

x=−2

∫ √
4−x2

y=−
√
4−x2

∫ √
4−x2−y2

z=−
√

4−x2−y2

dz dy dx−
∫ 1

x=−1

∫ √
1−x2

y=−
√
1−x2

∫ √
4−x2−y2

z=−
√

4−x2−y2

dz dy dx

(b)

V =

∫ 2π

θ=0

∫ 2

r=1

∫ √
4−r2

z=−
√
4−r2

r dz dr dθ

(c)

V =

∫ 2π

θ=0

∫ 5π/6

ϕ=π/6

∫ 2

ρ=cscϕ

ρ2 sinϕdρ dϕ dθ

Cylindrical coordinates Spherical coordinates

Image credit: UT Austin
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EXAMPLE 7.7

Evaluate
∫∫∫

B
e(x

2+y2+z2)1/2 dV, where B is the unit ball B =
{
(x, y, z)

∣∣x2 + y2 + z2 ≤ 1
}
.

Solution:

Since the boundary of B is a sphere, we use spherical coordinates:

B = {(ρ, θ, ϕ) | 0 ≤ ρ ≤ 1, 0 ≤ θ ≤ 2π, 0 ≤ ϕ ≤ π}

In addition, spherical coordinates are appropriate because we have a solid of the form x2 +
y2 + z2 = ρ2.
So the integral becomes

∫∫∫
B

e(x
2+y2+z2)3/2 dV =

∫ π

0

∫ 2π

0

∫ 1

0

e(ρ
2)3/2 · ρ2 sinϕdρ dθ dϕ.

=

∫ π

0

sinϕdϕ ·
∫ 2π

0

dθ ·
∫ 1

0

ρ2eρ
3

dρ.

Let u = ρ3, so that du = 3ρ2dρ ⇒ dρ = du
3ρ2 . Then

∫ 1

0

ρ2eρ
3

dρ =
1

3

∫ 1

0

eu du =
1

3
(e− 1).

∫ π

0

sinϕdϕ = [− cosϕ]π0 = − cosπ + cos 0 = 2,

∫ 2π

0

dθ = 2π.

Putting it all together, we get

∫∫∫
B

e(x
2+y2+z2)3/2 dV = 2 · 2π · 1

3
(e− 1) =

4π

3
(e− 1).

If we were to evaluate this using Cartesian coordinates, we would have to evaluate

∫ 1

−1

∫ √
1−x2

−
√
1−x2

∫ √
1−x2−y2

−
√

1−x2−y2

e(x
2+y2+z2)3/2 dz dy dx.
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EXAMPLE 7.8

Find the center of mass of the solid region Q of uniform density, bounded below by the
upper nappe of the cone z2 = x2 + y2 and above by the sphere x2 + y2 + z2 = 9.

Solution:

Because the density is uniform, we can take ρ(x, y, z) = k. By symmetry, the center of mass
lies on the z-axis, so it suffices to compute

z̄ =
Mxy

m
,

where m = kV . We can use the equation of the sphere to find that ρ = 3. To find ϕ, we use
the fact that the sphere and cone intersect when (x2+ y2)+ z2 = (z2)+ z2 = 9. Solving this
yields z = 3√

2
. Then, z = ρ cosϕ = 3√

2
· 1
3 = cosϕ ⇒ ϕ = π

4 . Now we find V :

V =

∫∫∫
Q

dV =

∫ 2π

0

∫ π/4

0

∫ 3

0

ρ2 sinϕdρ dϕ dθ

=

∫ 2π

0

∫ π/4

0

9 sinϕdϕ dθ = 9

∫ 2π

0

[− cosϕ]
π/4
0 dθ = 9

∫ 2π

0

(
1−

√
2

2

)
dθ

= 9 · 2π ·

(
1−

√
2

2

)
= 9π(2−

√
2).

Thus, m = kV = 9kπ(2−
√
2). We now compute Mxy:

Mxy =

∫∫∫
Q

kz dV = k

∫∫∫
Q

ρ cosϕ · ρ2 sinϕdρ dθ dϕ

= k

∫ π/4

0

∫ 2π

0

∫ 3

0

ρ3 cosϕ sinϕdρ dθ dϕ

= k

∫ π/4

0

∫ 2π

0

[
ρ4

4

]3
0

cosϕ sinϕdθ dϕ =
81k

4

∫ π/4

0

∫ 2π

0

cosϕ sinϕdθ dϕ

=
81k

4

∫ π/4

0

2π cosϕ sinϕdϕ =
81kπ

2

∫ π/4

0

cosϕ sinϕdϕ

=
81kπ

2
·
[
1

2
sin2 ϕ

]π/4
0

=
81kπ

2
· 1
2
· sin2

(π
4

)
=

81kπ

2
· 1
2
·

(√
2

2

)2

=
81kπ

2
· 1
2
· 1
2
=

81kπ

8

Then, z̄ =
Mxy

m = 81kπ/8

9kπ(2−
√
2)

= 9(2+
√
2)

16 = 1.92. The center of mass is (0, 0, 1.92).
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EXAMPLE 7.9

Surfaces of the form ρ = 1 + 1
5 sin(mθ) sin(nϕ) have been used as models for tumors. The

“bumpy sphere” with m = 6 and n = 5 is shown. Set up the integral and then evaluate the
integral numerically to find its volume.

Image credit: Stewart

Solution:

The volume enclosed by a surface defined in spherical coordinates by ρ = f(θ, ϕ) is given by
the triple integral

V =

∫∫∫
E

ρ2 sinϕdρ dϕ dθ.

Since ρ is a function of θ and ϕ, we treat this as a variable upper bound. So the volume
becomes

V =

∫ 2π

0

∫ π

0

∫ 1+ 1
5 sin(6θ) sin(5ϕ)

0

ρ2 sinϕdρ dϕ dθ.

We evaluate the innermost integral:

∫ 1+ 1
5 sin(6θ) sin(5ϕ)

0

ρ2 dρ =

[
1

3
ρ3
]1+ 1

5 sin(6θ) sin(5ϕ)

0

.

So the final integral is

V =

∫ 2π

0

∫ π

0

1

3

(
1 +

1

5
sin(6θ) sin(5ϕ)

)3

sinϕdϕ dθ

Here is the result in MATLAB:
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EXAMPLE 7.9

Find the volume of the spherical planetarium in l’Hemisfèric in Valencia, Spain, which has
a radius of approximately 50 ft, using the equation x2 + y2 + z2 = r2.

Image credit: Visit Valencia

Solution:

We calculate the volume of the ball in the first octant, where x ≤ 0, y ≤ 0, and z ≤ 0, using
spherical coordinates, and then multiply the result by 8 for symmetry. The range of the
variables is:

E =
{
(ρ, θ, ϕ)

∣∣∣ 0 ≤ ρ ≤ r, 0 ≤ θ ≤ π

2
, 0 ≤ ϕ ≤ π

2

}

Therefore,

V =

∫∫∫
D

dx dy dz = 8

∫ π/2

0

∫ π/2

0

∫ r

0

ρ2 sinϕdρ dθ dϕ

= 8

(∫ π/2

0

∫ π/2

0

dθ sinϕdϕ

)(∫ r

0

ρ2 dρ

)

= 8

(∫ π/2

0

sinϕdϕ

)(∫ π/2

0

dθ

)(∫ r

0

ρ2 dρ

)

= 8 · [− cosϕ]
π/2
0 · [θ]π/20 ·

[
ρ3

3

]r
0

= 8 · (1) ·
(π
2

)
·
(
r3

3

)

=
4πr3

3

So for a sphere with a radius of approximately 50 ft, the volume is 523,600 ft3.
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8 Change of Variables in Multiple Integrals

8.1 The Jacobian

In single-variable calculus, one common method you used to evaluate integrals was u-substitution:

∫ b

a

f(x) dx =

∫ d

c

f(g(u)) g′(u) du

where x = g(u), a = g(c), b = g(d).

With multiple integrals, you see change of variables when we convert from Cartesian to polar
coordinates:

∫∫
R

f(x, y) dA =

∫∫
S

f(r cos θ, r sin θ) r dr dθ

where r = x cos θ and y = r sin θ. In this case, S is a region in the rθ-plane that corresponds to the
region R in the xy-plane.

We can generalize any of these processes as a transformation from the uv-plane to the xy-plane:

T (u, v) = (x, y)

where x = g(u, v) and y = h(u, v). This would be known as a C−1 transformation which means
that g and h have continuous first-order partial derivatives. If T (u1, v1) = (x1, y1), then we call
point (x1, y1) the image of point (u1, v1). If there are no points on the domain that map to the
same image, T is called one-to-one. Here, T transforms S into a region R which creates the image
of S, consisting of the images of all points in S:

This would be written as T : D → R.
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If T is one-to-one, then it has an inverse transformation T−1 from the xy-plane to the uv-plane.

EXAMPLE 8.1

A transformation is defined by the equations x = u2 − v2 and y = 2uv Find the image of
the square S = {(u, v) | 0 ≤ u ≤ 1, 0 ≤ v ≤ 1}.

Solution:

The transformation maps the boundary of S into the boundary of the image. We determine
the image by examining each side of the square:

For the first side, S1, we will let v = 0, with 0 ≤ u ≤ 1. And because we have x = u2 and
y = 0, we have 0 ≤ x ≤ 1. S1 maps to the horizontal segment from (0, 0) to (1, 0) in the
xy-plane.

For side S2, we will Let u = 1, with 0 ≤ v ≤ 1. Eliminating v from x = 1 − v2 and y = 2v

yields x = 1− y2

4 with 0 ≤ x ≤ 1 which is a parabolic arc that opens to the left.

For side S3, we have 0 ≤ u ≤ 1 from v = 1 and x = y2

4 − 1 with −1 ≤ x ≤ 0 which gives a
parabolic arc that opens to the right.

For side S4, we have 0 ≤ v ≤ 1 from u = 0. Then we have x = −v2 and y = 0 with
−1 ≤ x ≤ 0. This maps to the horizontal segment from (−1, 0) to (0, 0).

Therefore, the image of the square S under the transformation is a region R in the xy-plane
bounded by the x-axis and the two parabolic arcs:

Image credit: Stewart
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Disk of radius a Region

Cartesian (disk) D =
{
(x, y) : x2 + y2 ≤ a2

}
Polar (rectangle) D∗ = {(r, θ) : 0 ≤ r ≤ a, 0 ≤ θ ≤ 2π}

Annulus between circles of radii a and b Region

Cartesian (annulus) D =
{
(x, y) : a2 ≤ x2 + y2 ≤ b2

}
Polar (rectangle) D∗ = {(r, θ) : a ≤ r ≤ b, 0 ≤ θ ≤ 2π}

Examples of converting regions from rectangular to polar coordinates

Suppose a transformation T maps a region S in the uv-plane to a region R in the xy-plane:

T (u, v) = (x, y)

Image credit: Stewart

We can represent the position vector of the image of the point (u, v) as

r⃗(u, v) = x(u, v) i+ y(u, v) j.

Now let’s explain what happens in the image geometrically. The small rectangle in the uv-plane
near a point (u0, v0), with width ∆u and height ∆v maps to a curved region in the xy-plane. For
small ∆u and ∆v, we can approximate the image as a parallelogram.
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The tangent vector at (u0, v0) is given by this partial derivative:

r⃗u = gu(u0, v0)i+ hu(u0, v0)j =
∂x

∂u
i+

∂y

∂u
j

The tangent vector at (x0, y0) is given by this partial derivative:

r⃗v = gv(u0, v0)i+ hv(u0, v0)j =
∂x

∂v
i+

∂y

∂v
j

Then the two adjacent sides of the image parallelogram are approximately:

a⃗ = r⃗(u0 +∆u, v0)− r⃗(u0, v0)

b⃗ = r⃗(u0, v0 +∆v)− r⃗(u0, v0)

Using the fact that

r⃗u = lim
∆u→0

r⃗(u0 +∆u, v0)− r⃗(u0, v0)

∆u
,

we can say that

a⃗ = r⃗(u0 +∆u, v0)− r⃗(u0, v0) ≈ ∆u r⃗u

and

b⃗ = r⃗(u0, v0 +∆v)− r⃗(u0, v0) ≈ ∆v r⃗v.

The area of a parallelogram spanned by vectors a⃗ and b⃗ is given by the magnitude of their cross
product. Thus, the area of the image region A is given by:

A ≈ |r⃗u × r⃗v| ·∆u∆v

In two dimensions, the cross product becomes the absolute value of the Jacobian determinant*:

r⃗u × r⃗v =

∣∣∣∣∣∣∣∣∣
i j k

∂x
∂u

∂y
∂u 0

∂x
∂v

∂y
∂v 0

∣∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣
∂x
∂u

∂y
∂u

∂x
∂v

∂y
∂v

∣∣∣∣∣∣k =

∣∣∣∣∣∣
∂x
∂u

∂y
∂u

∂x
∂v

∂y
∂v

∣∣∣∣∣∣k
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The Jacobian of the transformation T given by x = g(u, v) and y = h(u, v) is

∂(x, y)

∂(u, v)
=

∣∣∣∣∣∣
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣∣∣ = ∂x

∂u
· ∂y
∂v

− ∂x

∂v
· ∂y
∂u

* This is a function that you do not need to worry about for now! You will learn all about it in
linear algebra.

This gives us the change of variables formula for area:

∆A ≈
∣∣∣∣∂(x, y)∂(u, v)

∣∣∣∣ ∆u∆v

where the Jacobian would be evaluated at (u0, v0)

EXAMPLE 8.2

Find the Jacobian for the change of variables defined by

x = r cos θ and y = r sin θ

Solution:

Using the definition of a Jacobian, we compute as follows:

∂(x, y)

∂(r, θ)
=

∣∣∣∣∣∣
∂x
∂r

∂x
∂θ

∂y
∂r

∂y
∂θ

∣∣∣∣∣∣ =
∣∣∣∣∣∣cos θ −r sin θ

sin θ r cos θ

∣∣∣∣∣∣
= r cos2 θ + r sin2 θ = r

= r
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EXAMPLE 8.2

Let D ⊆ R2 and define the transformation

T⃗ : D ⊆ R2 −→ R2.

Compute the Jacobian of the transformation

T⃗ (r, θ) =

x
y

 =

r cos θ
r sin θ

 .

Solution:

The Jacobian determinant is given by:

J(r, θ) = det

∂x
∂r

∂x
∂θ

∂y
∂r

∂y
∂θ

 =

∣∣∣∣∣∣
∂x
∂r

∂x
∂θ

∂y
∂r

∂y
∂θ

∣∣∣∣∣∣
We compute the needed partial derivatives:

x = r cos θ ⇒

{
∂x
∂r = cos θ
∂x
∂θ = −r sin θ

y = r sin θ ⇒

{
∂y
∂r = sin θ
∂y
∂θ = r cos θ

Thus the Jacobian of the polar transformation becomes

J(r, θ) =

∣∣∣∣∣∣cos θ −r sin θ

sin θ r cos θ

∣∣∣∣∣∣
= cos θ · r cos θ − (−r sin θ) · sin θ

= r cos2 θ + r sin2 θ

= r(cos2 θ + sin2 θ)

= r.
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8.2 Change of Variables in Double and Triple Integration

Change of Variables in a Double Integral

Suppose T is a one-to-one C1 transformation with nonzero Jacobian that maps a region S in
the uv-plane to a region R in the xy-plane.

Let T (u, v) = (x(u, v), y(u, v)), and suppose f(x, y) is continuous on R.

Then,

∫∫
R

f(x, y) dA =

∫∫
S

f(x(u, v), y(u, v))

∣∣∣∣∂(x, y)∂(u, v)

∣∣∣∣ du dv.
The area element dA transforms as

dA =

∣∣∣∣∂(x, y)∂(u, v)

∣∣∣∣ du dv.

Let’s analyze a problem together. Suppose we are asked to evaluate the double integral

∫∫
D

√
x− y

x+ y + 1
dA

where D is the square with vertices at (0, 0), (1,−1), (2, 0), and (1, 1).

We begin by visualizing the region of integration. The regionD ⊆ R2 is a square oriented diagonally.
The region D has sides of length

√
2 and a total area of 2 units2:
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x

yy

A′ B′

C′F ′

(0, 0)

(1,−1)

(2, 0)

(1, 1)

1 2

1

−1

This integral will be difficult to evaluate directly in x and y due to the complicated form of the

integrand f(x, y) =
√

x−y
x+y+1 . Moreover, the domain D is not aligned with the coordinate axes,

which complicates the limits of integration.

To proceed, we partition the region D into two parts:

D = D1 ∪D2

where

D1 = {(x, y) : 0 ≤ x ≤ 1, −x ≤ y ≤ x}

and

D2 = {(x, y) : 1 ≤ x ≤ 2, −2 + x ≤ y ≤ 2− x}.

Given both the complexity of the integrand and the domain, we consider the following questions:

1. Can we map D onto a new region D that is easier to describe and integrate over?
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2. Can we choose new variables to simplify the integrand?

Let’s introduce the following change of variables:

u = u(x, y) = x− y, v = v(x, y) = x+ y

This change of variables is a linear transformation that can also be written in matrix form:

u
v

 =

1 −1

1 1

x
y


This transformation represents a rotation and dilation of the coordinate axes.

Let us now examine how the boundary of D transforms under this change of variables:

Boundary of D in the xy-plane Transformation Boundary of D in the uv-plane

A′: 0 ≤ x ≤ 1, y = −x A′ → A A: 0 ≤ u ≤ 2, v = 0

B′: 1 ≤ x ≤ 2, y = x− 2 B′ → B B: u = 2, 0 ≤ v ≤ 2

C ′: 1 ≤ x ≤ 2, y = 2− x C ′ → C C: 0 ≤ u ≤ 2, v = 2

F ′: 0 ≤ x ≤ 1, y = x F ′ → F F : u = 0, 0 ≤ v ≤ 2

The boundaries of D in the uv-plane are images. We will now compute each transformation.

We now compute how each side of the original region D transforms using the change of variable
equations

From A′ to A: We are given the edge A′ defined by y = −x and 0 ≤ x ≤ 1. Substituting into
the change of variables:

u = x− (−x) = 2x, v = x+ (−x) = 0.

Solving for x in terms of u, we get
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x =
u

2
.

Since 0 ≤ x ≤ 1, we have 0 ≤ u ≤ 2, and thus this edge maps to

0 ≤ u ≤ 2, v = 0.

From B′ to B: The edge B′ is given by y = x − 2 and 1 ≤ x ≤ 2. Substituting yields u =
x− (x− 2) = 2 so u = 2.

Also, v = x+ y = x+ (x− 2) = 2x− 2, so

x =
v + 2

2
.

Since 1 ≤ x ≤ 2, we find

1 ≤ v + 2

2
≤ 2 ⇒ 0 ≤ v ≤ 2.

So this edge maps to

0 ≤ v ≤ 2, u = 2.

From C ′ to C: Here C ′ is the line segment y = 2− x with 1 ≤ x ≤ 2. Then

v = x+ (2− x) = 2 ⇒ v = 2.

Also u = x− y = x− (2− x) = 2x− 2 ⇒ x = u+2
2 .

From 1 ≤ x ≤ 2, we have

1 ≤ u+ 2

2
≤ 2 ⇒ 0 ≤ u ≤ 2.

So this maps to

0 ≤ u ≤ 2, v = 2.
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From F ′ to F : The segment F ′ is the line y = x, 0 ≤ x ≤ 1. Then

u = x− x = 0, v = x+ x = 2x ⇒ x =
v

2
.

From 0 ≤ x ≤ 1, we obtain

0 ≤ v

2
≤ 1 ⇒ 0 ≤ v ≤ 2.

Thus this side maps to

0 ≤ v ≤ 2, u = 0.

To verify that our transformation correctly maps the region D ⊆ R2 to the new rectangular region
D ⊆ R2, let’s check our results by verifying the vertices match.

Vertex 1: (x, y) = (0, 0) {
u = 0− 0 = 0

v = 0 + 0 = 0
⇒ (u, v) = (0, 0)

Vertex 2: (x, y) = (1,−1) {
u = 1− (−1) = 2

v = 1 + (−1) = 0
⇒ (u, v) = (2, 0)

Vertex 3: (x, y) = (2, 0) {
u = 2− 0 = 2

v = 2 + 0 = 2
⇒ (u, v) = (2, 2)

Vertex 4: (x, y) = (1, 1) {
u = 1− 1 = 0

v = 1 + 1 = 2
⇒ (u, v) = (0, 2)

So the image of the regionD under this transformation is a rectangle with corners at (0, 0), (2, 0), (2, 2)
and (0, 2). Let’s visualize our new transformed region:
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(0, 0) (2, 0)

(2, 2)(0, 2)

A

B

C

F

Let’s now compute. We were given the double integral

∫∫
D

√
x− y

x+ y + 1
dw

where D is the square with vertices (0, 0), (1,−1), (2, 0), (1, 1). To evaluate this, we perform a
change of variables to simplify the integrand.

We define the transformation:

x = x(u, v) ⇒ x =
u+ v

2
and y = y(u, v) ⇒ y =

v − u

2

Now compute the Jacobian:

J(u, v) =

∣∣∣∣∣∣
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣∣∣ =
∣∣∣∣∣∣

1
2

1
2

− 1
2

1
2

∣∣∣∣∣∣ =
(
1

2
· 1
2

)
−
(
−1

2
· 1
2

)
=

1

4
−
(
−1

4

)
=

1

2

Thus,

∫∫
D

f(x, y) dw =

∫∫
D

f(u, v) · |J(u, v)| du dv.

Substitute the integrand f(x, y) =
√

x−y
x+y+1 :
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x− y

x+ y + 1
=

u

v + 1
⇒ f(u, v) =

√
u

v + 1

Therefore,

∫∫
D

√
x− y

x+ y + 1
dw =

∫∫
D

√
u

v + 1
·
∣∣∣∣12
∣∣∣∣ du dv =

1

2

∫∫
D

√
u

v + 1
du dv.

The transformed region D is the square with vertices (0, 0), (2, 0), (2, 2), (0, 2), so we integrate

=
1

2

∫ 2

0

∫ 2

0

√
u

v + 1
du dv.

We compute the inner integral first:

∫ 2

0

√
u

v + 1
du =

1√
v + 1

∫ 2

0

√
u du =

1√
v + 1

·
[
2

3
u3/2

]2
0

=
1√
v + 1

·2
3
·(2)3/2 =

1√
v + 1

·2
3
·2
√
2 =

4
√
2

3
√
v + 1

Now the full integral becomes

1

2

∫ 2

0

4
√
2

3
√
v + 1

dv =
2
√
2

3

∫ 2

0

(v+1)−1/2 dv =
2
√
2

3
·
[
2(v + 1)1/2

]2
0
=

2
√
2

3
·2
(√

3− 1
)
=

4
√
2

3
(
√
3−1)

∫∫
D

√
x− y

x+ y + 1
dw =

4
√
2

3
(
√
3− 1).

https://rhoclouds.github.io


https://rhoclouds.github.io 327

EXAMPLE 8.3

Find the area of a circle of radius R.

Image credit: Loughborough University

Solution:

Let C be the region bounded by a circle of radius R centered at the origin. Then the area
A of this region is A =

∫∫
C
dC. We change to polar coordinates using x = r cos θ and

y = r sin θ. We begin by computing the necessary partial derivatives:

∂x

∂r
= cos θ,

∂y

∂r
= sin θ,

∂x

∂θ
= −r sin θ,

∂y

∂θ
= r cos θ

Thus, the Jacobian determinant is

J(r, θ) =

∣∣∣∣∣∣
∂x
∂r

∂x
∂θ

∂y
∂r

∂y
∂θ

∣∣∣∣∣∣ =
∣∣∣∣∣∣cos θ −r sin θ

sin θ r cos θ

∣∣∣∣∣∣
= cos θ · r cos θ − (−r sin θ) · sin θ

= r cos2 θ + r sin2 θ

= r.

Therefore, the area becomes

A =

∫∫
C

dC =

∫ 2π

0

∫ R

0

r dr dθ =

∫ 2π

0

[
1

2
R2

]
dθ =

1

2
R2 · 2π = πR2.
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By now, your intuition may prompt you to hypothesize that the change of variables for triple
integrals is similar. And you would be correct. Let T be a transformation that maps a region S in
uvw-space onto a region R ⊆ R3 use the equations

x = g(u, v, w), y = h(u, v, w), z = k(u, v, w).

Then the Jacobian of the transformation is

∂(x, y, z)

∂(u, v, w)
=

∣∣∣∣∣∣∣∣∣
∂x
∂u

∂x
∂v

∂x
∂w

∂y
∂u

∂y
∂v

∂y
∂w

∂z
∂u

∂z
∂v

∂z
∂w

∣∣∣∣∣∣∣∣∣ .

Then the integral transforms as

∫∫∫
R

f(x, y, z) dV =

∫∫∫
S

f
(
x(u, v, w), y(u, v, w), z(u, v, w)

)
·
∣∣∣∣ ∂(x, y, z)∂(u, v, w)

∣∣∣∣ du dv dw
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EXAMPLE 8.4

Use change of variables to derive the formula for volume in spherical coordinates.

Solution:

We will use these change of variable equations:

x = ρ sinϕ cos θ, y = ρ sinϕ sin θ, z = ρ cosϕ

We first compute the Jacobian determinant:

∂(x, y, z)

∂(ρ, θ, ϕ)
=

∣∣∣∣∣∣∣∣∣
∂x
∂ρ

∂x
∂θ

∂x
∂ϕ

∂y
∂ρ

∂y
∂θ

∂y
∂ϕ

∂z
∂ρ

∂z
∂θ

∂z
∂ϕ

∣∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣∣
sinϕ cos θ −ρ sinϕ sin θ ρ cosϕ cos θ

sinϕ sin θ ρ sinϕ cos θ ρ cosϕ sin θ

cosϕ 0 −ρ sinϕ

∣∣∣∣∣∣∣∣∣
We expand along the third row:

det = cosϕ ·

∣∣∣∣∣∣−ρ sinϕ sin θ ρ cosϕ cos θ

ρ sinϕ cos θ ρ cosϕ sin θ

∣∣∣∣∣∣− 0 + (−ρ sinϕ) ·

∣∣∣∣∣∣sinϕ cos θ −ρ sinϕ sin θ

sinϕ sin θ ρ sinϕ cos θ

∣∣∣∣∣∣
Compute each 2× 2 determinant:

= cosϕ
(
−ρ2 sinϕ cosϕ(sin2 θ + cos2 θ)

)
− ρ sinϕ

(
ρ sin2 ϕ(cos2 θ + sin2 θ)

)
= −ρ2 sinϕ cos2 ϕ− ρ2 sin3 ϕ = −ρ2 sinϕ(cos2 ϕ+ sin2 ϕ) = −ρ2 sinϕ

Since 0 ≤ ϕ ≤ π, we have sinϕ ≥ 0, so
∣∣∣∂(x,y,z)∂(ρ,θ,ϕ)

∣∣∣ = | − ρ2 sinϕ| = ρ2 sinϕ. Finally, we have

the formula that we used before:

∫∫∫
R

f(x, y, z) dV =

∫∫∫
S

f(ρ sinϕ cos θ, ρ sinϕ sin θ, ρ cosϕ) · ρ2 sinϕdρ dθ dϕ

where dV = ρ2 sinϕdρ dθ dϕ.
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EXAMPLE 8.5

Use spherical coordinates to find the volume of a sphere of radius R.

Image credit: Loughborough University

Solution:

Instead of using Cartesian coordinates, we switch to spherical coordinates, which are better
suited to spheres. We have the change of variable equations x = r cos θ sinϕ, y = r sin θ sinϕ,
and z = r cosϕ.
We first compute the determinant of the Jacobian matrix formed by all partial derivatives:

J(r, θ, ϕ) =

∣∣∣∣∣∣∣∣∣
∂x
∂r

∂x
∂θ

∂x
∂ϕ

∂y
∂r

∂y
∂θ

∂y
∂ϕ

∂z
∂r

∂z
∂θ

∂z
∂ϕ

∣∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣∣
cos θ sinϕ −r sin θ sinϕ r cos θ cosϕ

sin θ sinϕ r cos θ sinϕ r sin θ cosϕ

cosϕ 0 −r sinϕ

∣∣∣∣∣∣∣∣∣
Because of the fact that J(r, θ, ϕ) is negative for 0 ≤ ϕ ≤ π. Thus determinant evaluates to
J(r, θ, ϕ) = −r2 sinϕ ⇒ |J(r, θ, ϕ)| = r2 sinϕ.

We now express the volume as a triple integral in spherical coordinates. The volume element
becomes:

dV = |J | dr dθ dϕ = r2 sinϕdr dθ dϕ

So the volume of the sphere is

V =

∫∫∫
E

1 dV =

∫ π

0

∫ 2π

0

∫ R

0

r2 sinϕdr dθ dϕ.
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EXAMPLE 8.5 (CONTINUED)

First, we evaluate the inner integral with respect to r:

∫ R

0

r2 dr =

[
1

3
r3
]R
0

=
1

3
R3

And now we evaluate the middle integral with respect to θ:

∫ 2π

0

dθ = 2π

Lastly, we evaluate the outer integral with respect to ϕ):

∫ π

0

sinϕdϕ = [− cosϕ]
π
0 = −(−1)− (1) = 2

Finally, we get the volume:

V =

(
1

3
R3

)
(2π)(2) =

4

3
πR3
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Part III

Vector Calculus

With knowledge of vectors, multivariable differentiation, and multiple integrals, we will now move
on to vector calculus. In Part III, we will learn all about vector fields and the properties associated
with them. We will learn about new, powerful integrals and work with them in higher dimensions.
By the end of this part, you will have learned about

• The calculus of vector fields

• Line integrals

• Surface integrals

• Green’s theorem, Stoke’s theorem, and Divergence theorem

NASA and MIT have worked together on a project called Estimating the Circulation and Climate of
the Ocean (ECCO). From millions of measurements of temperature, salinity, sea ice concentration,
pressure, water height, and more, they have modeled the planet in gorgeous detail. And not only
is their work stunning, but it has also enabled thousands of scientific discoveries. Data like these
require both magnitude and direction, and vector fields let us represent them visually. Image credit:
NASA
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9 Foundations of Vector Analysis

At the heart of vector calculus lies vector fields. In this chapter, we will learn what they are and
the different ways to analyze them.

9.1 Vector Fields

A vector field is a function that assigns a vector to every point in space on its domain. Here is the
formal definition:

Let f : D ⊆ R2 → R and g : D ⊆ R2 → R be multivariable, real-valued functions defined on a
region D ⊆ R2. We define a vector field as a function

F⃗ : D ⊆ R2 → R2

that assigns to each point (x, y) ∈ D a two-dimensional vector F⃗ (x, y).

We can express a vector field F⃗ as

F⃗ (x, y) = ⟨f(x, y), g(x, y)⟩ = f(x, y) i+ g(x, y) j.

A vector field F⃗ = ⟨f, g⟩ is continuous on a region D ⊆ R2 if both component functions f and g
are continuous on D.

A vector field F⃗ = ⟨f, g⟩ is differentiable on D ⊆ R2 if both f and g are differentiable on D.

Vector fields technically exist in four-dimensional spaces because there are two dimensions for the
input and two dimensions for the output. We can’t really draw in four dimensions by hand, so we
draw them in two dimensions. For a selected input point P (x, y), we plot the output vector F⃗ (x, y)
with a tail at P (x, y) and repeat for other points until the function is sufficiently represented.

Consider the vector field F⃗ (x, y) = −y i+x j. This field assigns to each point a vector perpendicular
to the position vector ⟨x, y⟩, causing the field to rotate counterclockwise around the origin.

To sketch the field, choose a grid of sample points and evaluate F⃗ (x, y) at each. For example:

(x, y) F⃗ (x, y)

(0, 3) −3 i = ⟨−3, 0⟩

(1, 0) j = ⟨0, 1⟩

(2, 2) −2 i+ 2 j = ⟨−2, 2⟩
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These vectors all lie on the unit circle and have the same magnitude:

∥F⃗ (x, y)∥ =
√

(−y)2 + x2 =
√
x2 + y2

Thus, vectors of constant magnitude trace out level curves in the plane.
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Let’s finish this plot by finding more points:

(x, y) F⃗ (x, y) (x, y) F⃗ (x, y)

(0, 3) −3i = ⟨−3, 0⟩ (−3, 0) −j = ⟨0,−3⟩

(1, 0) j = ⟨0, 1⟩ (−2,−2) 2i− 2j = ⟨2,−2⟩

(2, 2) −2i+ 2j = ⟨−2, 2⟩ (−1, 0) −i = ⟨−1, 0⟩

(3, 0) j = ⟨0, 3⟩ (0,−3) 3i = ⟨3, 0⟩

(0,−1) i = ⟨1, 0⟩ (2,−2) 2i+ 2j = ⟨2, 2⟩

(−2, 2) −2i− 2j = ⟨−2,−2⟩ (2, 2) −2i+ 2j = ⟨−2, 2⟩

And then we finish the plot:
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Please run the MATLAB code yourself and have a look!

x = [1, 2, 3, 0, -2, 0, -1, -2, -3, 0, 2, 0];

y = [0, 2, 0, 1, 2, 3, 0, -2, 0, -1, -2, -3];

u = -y;

v = x;

quiver(x, y, u, v, 0, 'LineWidth ', 1.5, 'Color ', 'b')
hold on

plot(x, y, 'ko', 'MarkerFaceColor ', 'k')

radii = [1, 2, 3];

theta = linspace(0, 2*pi , 200);

for r = radii

xc = r * cos(theta);

yc = r * sin(theta);

plot(xc , yc , 'k--', 'LineWidth ', 0.75)

end

axis equal

xlim([-4 4])

ylim([-4 4])

grid on

xlabel('$x$', 'Interpreter ', 'latex ')
ylabel('$y$', 'Interpreter ', 'latex ')

vectorFieldPlot minusYplusX.m


x = [1, 2, 3, 0, -2, 0, -1, -2, -3, 0, 2, 0];
y = [0, 2, 0, 1, 2, 3, 0, -2, 0, -1, -2, -3];

u = -y;
v = x;

quiver(x, y, u, v, 0, 'LineWidth', 1.5, 'Color', 'b')
hold on
plot(x, y, 'ko', 'MarkerFaceColor', 'k')

radii = [1, 2, 3];
theta = linspace(0, 2*pi, 200);
for r = radii
    xc = r * cos(theta);
    yc = r * sin(theta);
    plot(xc, yc, 'k--', 'LineWidth', 0.75)
end

axis equal
xlim([-4 4])
ylim([-4 4])
grid on
xlabel('$x$', 'Interpreter', 'latex')
ylabel('$y$', 'Interpreter', 'latex')
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For your interest, here is a gallery of vector fields:

Coastal wind speeds off the coast of Califor-
nia from 2008. Image credit: UCSC

Hydrodynamic simulation of vorticity in
quark-gluon plasma. The swirling arrows
show rotational fluid motion arising from
high-energy ion collisions. Image credit:
Berkeley Lab

Magnetic spin textures in a synthetic mate-
rial to visualize particle-like textures. The
arrows show local magnetic spin orientations.
Image credit: MagLab

Air flow around an airfoil in ANSYS. Image
credit: CMU

Let r⃗(x, y) = ⟨x, y⟩ where r⃗ : D ⊆ R2 → R2. Let f(x, y) be a two-variable, real-valued function
where f : D ⊆ R2 → R.
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A vector field in the form

F⃗ (x, y) = f(x, y) · r⃗ = f(x, y) · ⟨x, y⟩

is called a radial vector field.

Of special interest are radial vector fields of the form

F⃗ (x, y) =
r⃗

∥r⃗∥p2
=

⟨x, y⟩
∥r⃗∥p2

,

where p ∈ R. At every point (x, y) ∈ R2, the vectors are pointed directly outward from the origin
with

∥F⃗∥ =
1

∥r⃗∥p−1
.

Radial vector field F⃗ (x, y) =
x i+ y j√
x2 + y2

On the other hand, A rotational vector field in R2 is a vector field of the form

F⃗ (x, y) = ⟨−y, x⟩ = −y i+ x j.
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This field assigns to each point a vector tangent to the circle centered at the origin passing through
(x, y), inducing a counterclockwise rotation around the origin. Thus, the vector at a point (x, y) is

tangent rather than perpendicular to a circle with radius r =
√
x2 + y2:

Rotational vector field

A shear vector field represents a linear distortion of space in one direction, but the amount of
movement depends on ”how far you are” in the perpendicular direction. For example, in a horizontal
shear, the vectors point left and right, but their length changes depending on how far up or down
you are.

Horizontal shear:

F⃗ (x, y) = ⟨y, 0⟩ = y i

Here, vectors point purely in the x-direction, with magnitude depending on the y-position. Hori-
zontal layers of space are ”slid” sideways.

Vertical shear:

F⃗ (x, y) = ⟨0, x⟩ = x j

Vectors point purely in the y-direction, with magnitude depending on the x-position. Vertical layers
are pushed upward or downward.
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Horizontal shear field F⃗ (x, y) = ⟨y, 0⟩

Vertical shear field F⃗ (x, y) = ⟨0, x⟩
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Radial vector fields are great for modeling physical phenomena that radiate outward from a central
point. For instance, you may use them to represent gravitational fields of planets. Rotational vector
fields are great for physical phenomena that ”swirl” such as fluids in a vortex or magnetic fields
around circular wire loops. Shear vector fields are generally more niche, but can be used to capture
a sort of ”stretching.” This includes solid mechanics and materials analysis.

A velocity field is a vector field that assigns a velocity vector to each point in space, typically used
to describe the flow of a fluid. For example, imagine fluid moving steadily through a pipe: each
point (x, y, z) inside the pipe has a corresponding velocity vector V⃗ (x, y, z) indicating the direction
and speed of flow at that location. Velocity fields can also describe rotational motion, like the
swirling of water around a drain or the counterclockwise rotation of a wheel.

A gravitational field is another important example of a vector field. According to Newton’s law of
gravitation, an object of mass m located at position vector x⃗ = ⟨x, y, z⟩ ∈ R3 experiences a force
due to a second object of mass M located at the origin. The force is given by the formula:

F⃗ (x⃗) = −mMG

|x⃗|3
x⃗ = −mMG

r3
r⃗

This field always points inward, toward the origin, because gravity acts as an attractive force. The
farther away an object is, the weaker the force becomes. More specifically, the magnitude decays
like 1/|x⃗|2. The vector field structure above is called an inverse-square radial field, since the force
vector points along the radial direction and its strength decreases with the square of the distance.

We can write the gravitational field in terms of its component functions by using the fact that
x⃗ = x i+ y j+ z k and ∥x⃗∥ =

√
x2 + y2 + z2:

F⃗ (x, y, z) =
−mMGx

(x2 + y2 + z2)3/2
i+

−mMGy

(x2 + y2 + z2)3/2
j+

−mMGz

(x2 + y2 + z2)3/2
k.
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Gravitational force field. Image credit: Stewart

Electric fields have a very similar structure. According to Coulomb’s law, a point charge Q located
at the origin exerts a force on another charge q at position x⃗ given by

F⃗ (x⃗) =
εqQ

|x⃗|3
x⃗

where the constant, permittivity ε, depends on the medium. Like gravity, this force weakens with
distance squared, but the direction can vary: if q and Q have the same sign, the force is repulsive
(pointing away from the origin); if opposite, it’s attractive. To simplify calculations, physicists

often work with the electric field E⃗, which is the force per unit charge:

E⃗(x⃗) =
εQ

|x⃗|3
x⃗

This makes the electric field another example of a radial field, but one that can point outward or
inward depending on the sign of Q.
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Let ϕ : D ⊆ R2 → R be a two-variable, real-valued function. Suppose we visualize the output of
this function as a surface:

z = ϕ(x, y)

We can visualize the behavior of this surface by graphing various level curves. Let a level curve be
defined by

Lc(ϕ) = {(x, y) ∈ D : ϕ(x, y) = c ∈ R} .

At the point (a, b) on a specific level curve, the gradient

∇ϕ(a, b) = ⟨ϕx(a, b), ϕy(a, b)⟩

is orthogonal to the tangent line of the level curve at the point (a, b).

With this geometry in mind, one way to generate vector fields is to let

F⃗ (x, y) = ∇ϕ(x, y) = ⟨ϕx(x, y), ϕy(x, y)⟩ = ⟨f(x, y), g(x, y)⟩ .

Such a vector field F⃗ = ∇ϕ is called a gradient field, since the field arises from taking the gradient
of some scalar function.

The scalar function ϕ = ϕ(x, y) is called a potential function.

Gradient fields are useful in many applications because many important physical quantities form
gradients. One example is when molecules move from regions of high concentration to low concen-
tration in cellular transport. Another example is in temperature. There is a law of physics which
states that heat diffuses in the direction of the vector field

−F⃗ = −∇ϕ(x, y),

which points in the direction in which temperature decreases most rapidly. This idea governs how
heat sinks work.
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And now for the formal definition of the gradient:

If f is a scalar function of two variables, recall that its gradient is defined by

∇f(x, y) = fx(x, y) i+ fy(x, y) j.

Therefore, ∇f is really a vector field on R2 and is called a gradient vector field. Likewise,
if f is a scalar function of three variables, its gradient is a vector field on R3 given by

∇f(x, y, z) = fx(x, y, z) i+ fy(x, y, z) j+ fz(x, y, z)k.

9.2 Line Integrals

We begin by introducing line integrals of scalar-valued functions

f : D ⊆ Rn → R

over a smooth, parameterized, oriented curve C.

Suppose z = f(x, y) is a real-valued function of two variables, with

f : D ⊆ R2 → R.

Let C ⊆ D be a parameterized curve contained in the domain D, where

C = {r⃗(s) : a ≤ s ≤ b} = {⟨x(s), y(s)⟩ : a ≤ s ≤ b},

and s represents the arc length parameter along the curve.

Consider the surface defined by the function values along the curve:

SC = {z = f(x, y) : (x, y) ∈ C} = {z = f(x(s), y(s)) : a ≤ s ≤ b}.

Then, the area between the curve SC on the surface and the embedding of C in the xy-plane is
given symbolically by the line integral

∫
SC

f dω =

∫
C

f(x(s), y(s)) ds = lim
∆→0

n∑
k=1

f(x(s∗k), y(s
∗
k))∆sk.
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Line integrals generalize the concept of integration to curves in space. Instead of summing values
over an interval, we sum values along a curve.

For a scalar field, we write

∫
C

f(x, y) ds.

This represents the total weighted length along the curve, such as mass of a wire with density f .

For a vector field, we say

∫
C

F⃗ · dr⃗.

This measures the total amount of the vector field that aligns with the direction of motion, like
total work done by a force field along a path.

To define a line integral
∫
C
F⃗ · ds⃗ of a vector field F⃗ : D ⊆ R2 → R2, we start with a curve C.

Let C = {r⃗(t) : a ≤ t ≤ b} be a smooth, oriented curve that lies entirely within the domain of the
vector field. It is bounded by r⃗(a) = ⟨x(a), y(a)⟩ and r⃗(b) = ⟨x(b), y(b)⟩. Note that orientation
determines the direction of the tangent line, meaning that increasing t gives the “positive” direction.

At any time t0 ∈ [a, b], we define the point on the curve as r⃗0 = r⃗(t0) = ⟨x(t0), y(t0)⟩ and the (not
necessarily unit) tangent vector as v⃗ = r⃗ ′(t0) = ⟨x′(t0), y

′(t0)⟩. The tangent line at r⃗0 is then

r⃗(t) = r⃗0 + tv⃗ = ⟨x0, y0⟩+ t⟨x′(t0), y
′(t0)⟩.

We now move on to a different idea. Let C = {r⃗(s) = ⟨x(s), y(s)⟩ : a ≤ s ≤ b} be a curve parame-
terized by arc length s, and let

F⃗ (x, y) = ⟨f(x, y), g(x, y)⟩

be a vector field defined and continuous on a region D containing the curve C.

At a point r⃗0 = r⃗(s0) = ⟨x(s0), y(s0)⟩, we consider the tangent vector to the curve v⃗ = r⃗ ′(s0) =

⟨x′(s0), y
′(s0)⟩, the unit tangent vector T⃗ (s0) = v⃗

∥v⃗∥ = r⃗ ′(s0)
∥r⃗ ′(s0)∥ , and the vector from the field

F⃗0 = F⃗ (r⃗0) = F⃗ (r⃗(s0)).

To understand the contribution of F⃗ to the line integral at r⃗0, we consider the projection of F⃗0 onto
the unit tangent T⃗ (s0). This projection gives the component of the field in the direction of motion:
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projT⃗ F⃗ = (F⃗ · T⃗ )T⃗

Thus, the dot product F⃗ · T⃗ determines the amount of F⃗ that ”pushes along” the path.

Now let θ be the angle between the field F⃗ and the unit tangent T⃗ at a point.

Then,

F⃗ · T⃗ =
∥∥∥F⃗∥∥∥∥∥∥T⃗∥∥∥ cos θ =

∥∥∥F⃗∥∥∥ cos θ
since

∥∥∥T⃗∥∥∥ = 1.

The sign of F⃗ · T⃗ gives the nature of the contribution to the line integral:

Positive Contribution:

0 < θ < 90◦ ⇒ F⃗ · T⃗ > 0

The vector field has a component pointing along the direction of the curve.

Zero Contribution:

θ = 90◦ ⇒ F⃗ · T⃗ = 0

The field is perpendicular to the path and does no “work.”

Negative Contribution:

90◦ < θ < 180◦ ⇒ F⃗ · T⃗ < 0

The field points against the direction of the curve and thus subtracts from the integral.

Let’s now take a few steps back and go through the same approach we did previously for multiple
integrals.

Line integrals let us integrate a function f(x, y) along a curve C in the plane. You can think of
it as summing up weighted contributions of f along small pieces of the curve, where each piece
contributes based on its length and the value of the function at that location.

Suppose the curve C is given by a smooth parametrization:
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x = x(t), y = y(t), for a ≤ t ≤ b,

or as a vector function

r⃗(t) = ⟨x(t), y(t)⟩.

We divide the interval [a, b] into small subintervals, and approximate the curve by short segments.
At each segment, we evaluate f and multiply by the segment’s arc length ∆s. This gives a Riemann-
style sum:

∑
f(x∗

i , y
∗
i )∆si.

Image credit: Stewart

Taking the limit as the subintervals shrink, we define the scalar line integral:

If f is continuous on a smooth curve C, then the line integral of f along C is∫
C

f(x, y) ds = lim
n→∞

n∑
i=1

f(x∗
i , y

∗
i )∆si.

To evaluate this, we use the arc length formula from parametric curves:
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ds =

√(
dx

dt

)2

+

(
dy

dt

)2

dt.

So the line integral becomes

∫
C

f(x, y) ds =

∫ b

a

f(x(t), y(t))

√(
dx

dt

)2

+

(
dy

dt

)2

dt.

This is just a weighted integral along a curve!

If the curve C is a straight horizontal line from (a, 0) to (b, 0), then x = x and y = 0. Thus, ds = dx.
And the line integral becomes more familiar:

∫
C

f(x, y) ds =

∫ b

a

f(x, 0) dx.

If f(x, y) ≥ 0, then the line integral gives the area of a “fence” with base on the curve C, and
height above each point equal to f(x, y). You’re summing the height of the fence along the curve,
weighted by its arc length, similarly to what we did previous with multiple integrals.

The name “line integral” is a bit misleading. It actually would make more sense if they were called
curve integrals.
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EXAMPLE 9.1

Evaluate the line integral

∫
C

2x ds, where C consists of two parts:

• C1: the arc of the parabola y = x2 from (0, 0) to (1, 1),

• C2: the vertical line segment from (1, 1) to (1, 2).

Image credit: Stewart

Solution:

We break the curve into two parts, C = C1 ∪C2, and compute each line integral separately.
For C1, we use x as the parameter since the curve is given by y = x2. We also have x = x
and 0 ≤ x ≤ 1.

The arc length element is:

ds =

√(
dx

dx

)2

+

(
dy

dx

)2

dx =
√
1 + (2x)2 dx =

√
1 + 4x2 dx

So the line integral becomes

∫
C1

2x ds =

∫ 1

0

2x
√

1 + 4x2 dx.
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EXAMPLE 9.1 (CONTINUED)

We use substitution u = 1 + 4x2 ⇒ du = 8x dx. Then, x = 0 ⇒ u = 1 and x = 1 ⇒ u = 5.

∫ 1

0

2x
√
1 + 4x2 dx =

1

4

∫ 5

1

u1/2 du =
1

4
· 2
3
u3/2

∣∣∣∣5
1

=
1

6

(
53/2 − 1

)
=

5
√
5− 1

6

We now move on to C2. This is a vertical line, so we use y as the parameter:

x = 1, y = y, 1 ≤ y ≤ 2

Then,

ds =

√(
dx

dy

)2

+

(
dy

dy

)2

dy =
√
0 + 1 dy = dy.

Since x = 1, we have:

∫
C2

2x ds =

∫ 2

1

2(1) dy =

∫ 2

1

2 dy = 2

Finally,

∫
C

2x ds =

∫
C1

2x ds+

∫
C2

2x ds =
5
√
5− 1

6
+ 2

The value of a line integral
∫
C
f(x, y) ds depends on the meaning of the physical function f . Suppose

that ρ(x, y) represents the linear density at a point (x, y) of a thin wire shaped like a curve C. Then
the mass of the part of the wire from Pi−1 to Pi is approximately ρ(x∗

i , y
∗
i )∆si, and so the total

mass of the wire is approximately
∑

ρ(x∗
i , y

∗
i )∆si. By taking more and more points on the curve,

we obtain the mass m of the wire as the limiting value of these approximations:
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m = lim
n→∞

n∑
i=1

ρ(x∗
i , y

∗
i )∆si =

∫
C

ρ(x, y) ds.

This comes from summing contributions of the form ρ(x∗
i , y

∗
i )∆si across the arc-length segments

of the wire, then taking a limit as those segments shrink.

If f(x, y) = 2 + x2y represents the density of a wire, then the line integral
∫
C
f(x, y) ds gives the

total mass of that wire.

The center of mass (x̄, ȳ) of a wire with density function ρ(x, y) is given by

x̄ =
1

m

∫
C

xρ(x, y) ds

and

ȳ =
1

m

∫
C

yρ(x, y) ds.

Visualization of Riemann sums for line integrals. Image credit: UMich
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EXAMPLE 9.2

A wire takes the shape of the semicircle x2 + y2 = 1, y ≥ 0, and is thicker near its base
than near the top. Find the center of mass of the wire if the linear density at any point is
proportional to its distance from the line y = 1.

Image credit: Stewart

Solution:

We parametrize the semicircle as

x = cos t, y = sin t, 0 ≤ t ≤ π,

and note that ds = dt since this is parameterized by arc length.

The linear density function is given by ρ(x, y) = k(1− y) where k is a constant.

We first find the mass of the wire:

m =

∫
C

k(1− y) ds =

∫ π

0

k(1− sin t) dt = k [t+ cos t]
π
0 = k(π − 2)

Then, center of mass in the y-direction is given by

ȳ =
1

m

∫
C

yρ(x, y) ds =
1

k(π − 2)

∫ π

0

sin t · k(1− sin t) dt =
1

π − 2

∫ π

0

(sin t− sin2 t) dt.
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EXAMPLE 9.2 (CONTINUED)

Use the identity sin2 t = 1
2 (1− cos 2t):

∫ π

0

(sin t− sin2 t) dt =

∫ π

0

(
sin t− 1

2
+

1

2
cos 2t

)
dt =

[
− cos t− t

2
+

1

4
sin 2t

]π
0

= (−(−1)− π

2
+ 0)− (−1− 0 + 0) = 1− π

2
+ 1 = 2− π

2
=

4− π

2

Hence,

ȳ =
4− π

2(π − 2)
.

By symmetry, x̄ = 0, so the center of mass is

(
0,

4− π

2(π − 2)

)
= (0, 0.38).

Sometimes, instead of integrating along a curve by arc length, it is more convenient to integrate
with respect to one coordinate variable, x or y.

This means we approximate the line integral by summing values multiplied by small changes in x
or y rather than by small arc length segments.

Formally, the line integrals with respect to x and y are defined by the limits of sums:

∫
C

f(x, y) dx = lim
n→∞

n∑
i=1

f(x∗
i , y

∗
i )∆xi

and

∫
C

f(x, y) dy = lim
n→∞

n∑
i=1

f(x∗
i , y

∗
i )∆yi,

where ∆xi = xi − xi−1 and ∆yi = yi − yi−1.

To evaluate these integrals, we use a parametrization of the curve C:
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x = x(t), y = y(t), a ≤ t ≤ b.

Since dx = x′(t)dt and dy = y′(t)dt, the integrals become

∫
C

f(x, y) dx =

∫ b

a

f(x(t), y(t))x′(t) dt,

and

∫
C

f(x, y) dy =

∫ b

a

f(x(t), y(t))y′(t) dt.

It is common for line integrals with respect to x and y to appear together. In such cases, the
integral is abbreviated as

∫
C

P (x, y) dx+

∫
C

Q(x, y) dy =

∫
C

P (x, y) dx+Q(x, y) dy.

To set up a line integral, we often need a parametric form of the curve. For a line segment starting
at r⃗0 and ending at r⃗1, a natural parametrization is given by

r⃗(t) = (1− t)r⃗0 + tr⃗1, 0 ≤ t ≤ 1,

which moves linearly from r⃗0 to r⃗1 as t goes from 0 to 1.
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EXAMPLE 9.3

Let f(x, y) = x2 − y + 3, and let C be the semicircle of radius 2 around the origin lying
above the x-axis. Approximate

∫
C
f(x, y) dx using a Riemann sum with 3 subdivisions and

then evaluate the integral exactly.

Solution:

First, parametrize the curve C as

x = 2 cos t, y = 2 sin t, 0 ≤ t ≤ π.

We divide the interval [0, π] into 3 equal subdivisions [0, π/3], [π/3, 2π/3], and [2π/3, π]. The
sample points are chosen as the midpoints:

t = π/6, t = π/2, t = 5π/6

For the Riemann sum approximation, the base length of the first rectangle is the
distance between (2 cos 0, 2 sin 0) = (2, 0) and (2 cos π

3 , 2 sin
π
3 ) = (1,

√
3) with length√

(1− 2)2 + (
√
3− 0)2 =

√
1 + 3 = 2.

The height is the function value at the sample point (2 cos π
6 , 2 sin

π
6 ) = (

√
3, 1):

f(
√
3, 1) = (

√
3)2 − 1 + 3 = 3− 1 + 3 = 5.

Area of first rectangle is given by 2(5) = 10. Then, the base length of the second rectangle

is the distance between (1,
√
3) and (−1,

√
3) which is

√
(−1− 1)2 + (

√
3−

√
3)2 =

√
4 = 2.

The height at the midpoint (2 cos π
2 , 2 sin

π
2 ) = (0, 2) is f(0, 2) = 02 − 2 + 3 = 1.
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EXAMPLE 9.3 (CONTINUED)

The area of the second rectangle is given by 2(1) = 2. The base length of the third rectangle is

the distance between (−1,
√
3) and (−2, 0) which is

√
(−2 + 1)2 + (0−

√
3)2 =

√
1 + 3 = 2.

The height at (2 cos 5π
6 , 2 sin 5π

6 ) = (−
√
3, 1) is f(−

√
3, 1) = (−

√
3)2 − 1+ 3 = 3− 1+ 3 = 5.

The area of third rectangle is also given by 2(5) = 10. Adding these areas gives the Riemann
sum approximation:

10 + 2 + 10 = 22.

For the exact evaluation, first compute the derivatives x′(t) = −2 sin t and y′(t) = 2 cos t.
Thus,

√
x′(t)2 + y′(t)2 =

√
4 sin2 t+ 4 cos2 t =

√
4(sin2 t+ cos2 t) = 2.

The problem asks us to evaluate
∫
C
f(x, y) dx, so the line integral with respect to x is

∫
C

f(x, y) dx =

∫ π

0

f(2 cos t, 2 sin t)x′(t) dt =

∫ π

0

(4 cos2 t− 2 sin t+ 3)(−2 sin t) dt.

https://rhoclouds.github.io


https://rhoclouds.github.io 357

EXAMPLE 9.3 (CONTINUED)

Expand the integrand:

=

∫ π

0

(−8 cos2 t sin t+ 4 sin2 t− 6 sin t) dt.

To simplify, apply the double-angle identity for cosine squared:

4 cos2 t = 2 cos(2t) + 2,

So the integrand becomes

(2 cos(2t)− 2 sin t+ 5) · 2 = 4 cos(2t)− 4 sin t+ 10.

This has antiderivative 2 sin(2t) + 4 cos t+ 10t. Using this, we finally get

∫
C

f(x, y) dx = (2 sin(2t) + 4 cos t+ 10t)
∣∣∣π
0
= (0− 4 + 10π)− (0 + 4 + 0) = 10π − 8 = 23.4.

Thus, our estimate of 22 was not horrible.

Image credit: UMich
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Now that we’ve worked a little bit with line integrals in the plane, we will now move to line integrals
in space. That is, line integrals in three-dimensional space.

Suppose C is a smooth space curve given by the parametric equations

x = x(t), y = y(t), z = z(t), a ≤ t ≤ b,

or equivalently by the vector equation

r(t) = x(t)i+ y(t)j+ z(t)k.

If f is a continuous function of three variables on a region containing C, then the line integral of f
along C with respect to arc length is defined as

∫
C

f(x, y, z) ds = lim
n→∞

n∑
i=1

f(x∗
i , y

∗
i , z

∗
i )∆si.

This integral can be evaluated using the formula that generalizes the planar case by including the
z-component:

∫
C

f(x, y, z) ds =

∫ b

a

f(x(t), y(t), z(t))

√(
dx

dt

)2

+

(
dy

dt

)2

+

(
dz

dt

)2

dt.

In vector notation, this can be expressed compactly as

∫
C

f(r⃗(t))∥r⃗ ′(t)∥dt.

For the special case f(x, y, z) = 1, the line integral measures the length L of the curve C:

∫
C

ds =

∫ b

a

∥r⃗ ′(t)∥dt = L.

Line integrals along C with respect to x, y, and z can also be defined. For example,

∫
C

f(x, y, z) dz = lim
n→∞

n∑
i=1

f(x∗
i , y

∗
i , z

∗
i )∆zi =

∫ b

a

f(x(t), y(t), z(t))z′(t) dt
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Therefore, as in the plane, we evaluate integrals of the form

∫
C

P (x, y, z) dx+Q(x, y, z) dy +R(x, y, z) dz.

Previously, we went over line integrals with respect to x and y. We now add in the z-component:

∫
C

f(x, y, z) dx =

∫ b

a

f(x(t), y(t), z(t))x′(t) dt,

∫
C

f(x, y, z) dy =

∫ b

a

f(x(t), y(t), z(t))y′(t) dt,

∫
C

f(x, y, z) dz =

∫ b

a

f(x(t), y(t), z(t))z′(t) dt,

where the curve C is parameterized by

x = x(t), y = y(t), z = z(t), a ≤ t ≤ b.

Combined, we have

∫
C

P dx+Qdy +Rdz =

∫
C

P (x, y, z) dx+

∫
C

Q(x, y, z) dy +

∫
C

R(x, y, z) dz.

https://rhoclouds.github.io


https://rhoclouds.github.io 360

EXAMPLE 9.4

Evaluate the line integral
∫
C
y sin z ds, where C is the circular helix defined by

x = cos t, y = sin t, z = t, 0 ≤ t ≤ 2π.

Solution:

Using the formula for scalar line integrals in space, we have:

∫
C

y sin z ds =

∫ 2π

0

(sin t) sin t

√(
dx

dt

)2

+

(
dy

dt

)2

+

(
dz

dt

)2

dt.

√
(− sin t)2 + (cos t)2 + 12 =

√
sin2 t+ cos2 t+ 1 =

√
1 + 1 =

√
2.

Combining the integral together again yields

∫ 2π

0

sin2 t ·
√
2 dt =

√
2

∫ 2π

0

sin2 t dt.

Use the identity sin2 t = 1−cos 2t
2 to get

√
2

∫ 2π

0

sin2 t dt =
√
2

∫ 2π

0

1− cos 2t

2
dt =

√
2

2

∫ 2π

0

(1− cos 2t) dt.

Evaluating the integral,

∫ 2π

0

1 dt = 2π,

∫ 2π

0

cos 2t dt = 0,

so

√
2

2
(2π − 0) =

√
2π.
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We now come full circle and return to line integrals of vector fields.
Suppose a particle moves along a smooth curve C parameterized by

r⃗(t) = ⟨x(t), y(t), z(t)⟩, a ≤ t ≤ b.

The vector field F⃗ = P i+Qj+Rk represents the force at each point in space.

We divide the curve C into small segments between points Pi−1 and Pi, each with length ∆si.

At each point P ∗
i = (x∗

i , y
∗
i , z

∗
i ) in the ith segment, the particle approximately moves in the direction

of the unit tangent vector

T(t∗i ) =
r⃗ ′(t∗i )

∥r⃗ ′(t∗i )∥
.

The work done by the force F⃗ moving the particle through that segment is roughly

F⃗ (x∗
i , y

∗
i , z

∗
i ) ·T(t∗i )∆si,

which is the projection of the force onto the direction of motion times the length of the path
segment.

Summing over all segments and taking the limit as the segment lengths approach zero gives the
total work done by F⃗ along the curve:

W = lim
n→∞

n∑
i=1

F(x∗
i , y

∗
i , z

∗
i ) ·T(t∗i )∆si.

This limit defines the line integral of F⃗ along C:

W =

∫
C

F⃗ · dr⃗ =

∫
C

F⃗ ·T ds.

Because the unit tangent vector is T(t) = r⃗ ′(t)
∥⃗ r′(t)|∥, we can rewrite the line integral using the

parameter t as

∫
C

F · dr⃗ =

∫ b

a

F(r⃗(t)) · r⃗ ′(t) dt.
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Expanding in components:

∫
C

F · dr⃗ =

∫ b

a

[P (x(t), y(t), z(t))x′(t) +Q(x(t), y(t), z(t))y′(t) +R(x(t), y(t), z(t))z′(t)] dt.

This expression is often written as

∫
C

P dx+Qdy +Rdz,

where F = ⟨P i+Qj+Rk⟩.

Let F be a continuous vector field defined on a smooth curve C given by a vector function r⃗(t)
for a ≤ t ≤ b. Then the line integral of F along C is defined as

∫
C

F⃗ · dr⃗ =

∫ b

a

F⃗ (r⃗(t)) · r⃗ ′(t) dt =

∫
C

F⃗ ·T ds,

where T is the unit tangent vector and ds is the differential arc length.

When computing the work done by F moving a particle along C, it is important to specify the
direction of travel along the curve. A particle can move either forward or backward along C, and
the work depends on this direction.

This specified direction along C is called the orientation of the curve. The positive direction along
C is the specified orientation, while the opposite direction is negative. A curve with a chosen
orientation is called an oriented curve.

A closed curve is one for which there exists a parameterization r⃗(t) defined on a ≤ t ≤ b and satisfy-
ing r⃗(a) = r⃗(b) such that the curve is traversed exactly once. In other words, the parameterization
is one-to-one on the open interval (a, b). We will discuss this more later.

(a) An oriented curve between two points. (b) A closed oriented curve. Image credit: Strang &
Herman
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At each point on C, the force in the direction of motion is (F⃗ · T)T. Image credit: Larson &
Edwards

Concept Formula

Curve parameterization C : r⃗(t) = ⟨x(t), y(t), z(t)⟩, a ≤ t ≤ b

Length of curve L =
∫
C
ds =

∫ b

a
|r⃗ ′(t)| dt

Arc length differential ds = ∥r⃗ ′(t)∥dt =
√(

dx
dt

)2
+
(

dy
dt

)2
+
(
dz
dt

)2
dt

Scalar line integral (general 3D)
∫
C
f(x, y, z)ds =

∫ b

a
f(r⃗(t))∥r⃗ ′(t)∥dt

Scalar line integral (2D special
case)

∫
C
f(x, y)ds =

∫ b

a
f(x(t), y(t))

√
(x′(t))2 + (y′(t))2dt

Line integrals with respect to co-
ordinates

∫
C

f(x, y, z) dx =

∫ b

a

f(r⃗(t))x′(t) dt,∫
C

f(x, y, z) dy =

∫ b

a

f(r⃗(t)) y′(t) dt,∫
C

f(x, y, z) dz =

∫ b

a

f(r⃗(t)) z′(t) dt.

Vector line integral (general
form)

∫
C
F⃗ · dr⃗ =

∫ b

a
F⃗ (r⃗(t)) · r⃗ ′(t)dt

Vector line integral (component
form)

∫
C
F⃗ · dr⃗ =

∫
C
Pdx+Qdy +Rdz, F⃗ = ⟨P,Q,R⟩

Relation between scalar and vec-
tor line integrals

∫
C
F⃗ · dr⃗ =

∫
C
F⃗ ·T ds, T = r⃗ ′(t)

∥r⃗ ′(t)∥

Summary of Key Line Integral Formulas and Concepts
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EXAMPLE 9.5

Evaluate the line integral
∫
C
F⃗ · dr⃗ where F⃗ (x, y, z) = xyi+ yzj+ zxk and C is the twisted

cubic given by

x = t, y = t2, z = t3, 0 ≤ t ≤ 1.

Solution:

r⃗(t) = ti+ t2j+ t3k

r⃗ ′(t) = i+ 2tj+ 3t2k

F⃗ (r⃗(t)) = t3i+ t5j+ t4k

F⃗ (r⃗(t)) · r⃗ ′(t) = t3 + 2t6 + 3t6 = t3 + 5t6

∫
C

F⃗ · dr⃗ =

∫ 1

0

(t3 + 5t6)dt =

[
t4

4
+

5t7

7

]1
0

=
27

28

And here is a graph of the twisted cubic with some vectors acting along it:
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EXAMPLE 9.6

Let F⃗ be the vector field shown in the figure.

If C1 is the vertical line segment from (−3,−3) to (−3, 3), determine whether∫
C1

F⃗ · dr⃗

is positive, negative, or zero.

If C2 is the counterclockwise-oriented circle with radius 3 centered at the origin, determine
whether ∫

C2

F⃗ · dr⃗

is positive, negative, or zero.

Solution:

(a) Along the vertical line x = −3, the vectors of F⃗ have positive y-components. Since the

path moves upward, the tangent vector T⃗ points up, making the dot product F⃗ · T⃗ always
positive. Therefore, ∫

C1

F⃗ · dr⃗ =

∫
C1

F⃗ · T⃗ ds

is positive.

(b) Along the circle of radius 3, all the (nonzero) vectors of F⃗ point clockwise, which is

opposite the counterclockwise orientation of the path. Thus, F⃗ · T⃗ < 0 everywhere on C2,
and therefore, ∫

C2

F⃗ · dr⃗ =

∫
C2

F⃗ · T⃗ ds

is negative.
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EXAMPLE 9.7

A 160 lb man carries a 10 lb sack of grain up a helical staircase that wraps around a
silo with radius 20 ft. The silo is 90 ft tall, and the man makes exactly three complete
revolutions climbing to the top. How much work is done by the man against gravity?

Solution:

We have F⃗ = 160 + 10 = 170 lb. We will parametrize the staircase with

x = 20 cos t, y = 20 sin t, z =
90

6π
t =

15

π
t, 0 ≤ t ≤ 6π

Thus,

W =

∫
C

F · dr⃗

=

∫ 6π

0

⟨0, 0, 170⟩ · ⟨−20 sin t, 20 cos t,
15

π
⟩ dt

=

∫ 6π

0

170 · 15
π
dt = 170 · 15

π
· 6π = 170× 15× 6 = 15300 ft · lb.

9.3 The Fundamental Theorem for Line Integrals

Recall from single-variable calculus that the fundamental theorem of calculus states

∫ b

a

F ′(x) dx = F (b)− F (a),

where F ′ is continuous on [a, b]. This expresses that the integral of a rate of change equals the net
change of the original function.

We can generalize this idea to functions of several variables and line integrals.

Let C be a smooth curve parameterized by a vector function r⃗(t) that is defined on a ≤ t ≤ b. Let f
be a differentiable scalar function of two or three variables whose gradient vector ∇f is continuous
on C. Then,

∫
C

∇f · dr⃗ = f(r⃗(b))− f(r⃗(a)).
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This theorem says that for a conservative vector field ∇f , the line integral depends only on the
values of f at the endpoints of C, not on the path taken. This is known as path independence.

If f is a function of two variables and C is a plane curve with initial point A(x1, y1) and terminal
point B(x2, y2), then

∫
C

∇f · dr⃗ = f(x2, y2)− f(x1, y1).

If f is a function of three variables and C is a space curve from A(x1, y1, z1) to B(x2, y2, z2), then

∫
C

∇f · dr⃗ = f(x2, y2, z2)− f(x1, y1, z1).

Using the definition of the line integral,

∫
C

∇f · dr⃗ =

∫ b

a

∇f(r⃗(t)) · r⃗ ′(t) dt,

we expand the dot product,

=

∫ b

a

(
∂f

∂x

dx

dt
+

∂f

∂y

dy

dt
+

∂f

∂z

dz

dt

)
dt.

And then by the chain rule,

=

∫ b

a

d

dt
f(r⃗(t)) dt = f(r⃗(b))− f(r⃗(a)).

This last step follows from the single-variable fundamental theorem of calculus.

Suppose C1 and C2 are two piecewise-smooth curves (paths) with the same initial point A and
terminal point B. In general,

∫
C1

F⃗ · dr⃗ ̸=
∫
C2

F⃗ · dr⃗,

because the value of the line integral depends on how the field behaves along the path C.

However, one key implication of the fundamental theorem of line integrals is that for a conservative
vector field F⃗ = ∇f , the line integral depends only on the endpoints. More precisely,
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∫
C1

∇f · dr⃗ =

∫
C2

∇f · dr⃗

whenever ∇f is continuous.

In general, for any continuous vector field F⃗ defined on a domain D, the line integral

∫
C

F⃗ · dr⃗

is said to be independent of path if

∫
C1

F · dr⃗ =

∫
C2

F⃗ · dr⃗

for any two paths C1 and C2 in D with the same initial and terminal points.

A curve C is called closed if its terminal point coincides with its initial point. That is, r⃗(b) = r⃗(a).

If the line integral is independent of path in D, then for any closed curve C ∈ D, we have

∫
C

F⃗ · dr⃗ = 0.

Conversely, if and only if

∫
C

F⃗ · dr⃗ = 0,

for every closed curve C ∈ D, then the line integral is independent of path.

Finally, we have the fundamental characterization of conservative vector fields:

Suppose F is a continuous vector field defined on an open, connected region D. Then F⃗ is con-
servative if and only if the line integral

∫
C
F⃗ · dr⃗ is independent of path in D. Equivalently, there

exists a scalar potential function f on D such that

∇f = F⃗ .

Let’s now learn when to classify vector fields as conservative.

Suppose F⃗ = P i + Qj is a conservative vector field, where P and Q have continuous first-order
partial derivatives on a domain D. Then there exists a scalar function f such that F⃗ = ∇f ,
meaning
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P =
∂f

∂x
and Q =

∂f

∂y
.

By Clairaut’s theorem on the equality of mixed partial derivatives, we have

∂P

∂y
=

∂2f

∂y∂x
=

∂2f

∂x∂y
=

∂Q

∂x
.

This leads to the following important criterion:

If F⃗ (x, y) = P (x, y)i + Q(x, y)j is a conservative vector field, where P and Q have continuous
first-order partial derivatives on a domain D, then throughout D we have

∂P

∂y
=

∂Q

∂x
.

The converse of this theorem holds only for special types of domains. To understand this, we
introduce the idea of the simple curve, which is a curve that does not intersect itself anywhere
between its endpoints. For example, if r(a) = r(b) but r(t1) ̸= r(t2) for a < t1 < t2 < b, the curve
is simple and closed.

In the previous theorem, we required D to be an open connected region. For the converse, a
stronger condition is necessary. A simply-connected region in the plane is a connected region D
such that every simple closed curve in D encloses only points that are also in D. Intuitively, a
simply-connected region contains no holes and cannot be split into two separate parts.

In terms of simply-connected regions, we can now state a version of the theorem with additional as-
sumptions (also known as a partial converse) that provides a practical method for verifying whether
a vector field on R2 is conservative:

Let F⃗ = P i + Qj be a vector field on an open, simply-connected region D. Suppose that P
and Q have continuous first-order partial derivatives and satisfy

∂P

∂y
=

∂Q

∂x

throughout D. Then F⃗ is conservative.
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Here is a visualization of the types of curves:

simple, not closed not simple, not closed

simple, closed not simple, closed

Here is a visualization of the types of regions:
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EXAMPLE 9.8

Determine whether or not the vector field F⃗ (x, y) =
(
3+2xy

)
i+
(
x2− 3y2

)
j is conservative.

Solution:

Let P (x, y) = 3 + 2xy and Q(x, y) = x2 − 3y2. Then compute the partial derivatives:

∂P

∂y
= 2x,

∂Q

∂x
= 2x

Since ∂P
∂y = ∂Q

∂x , and the domain of F⃗ is the entire plane R2, which is open and simply-

connected, we see that 2x = 2x and thus F⃗ is conservative.
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EXAMPLE 9.9

(a) Suppose F⃗ (x, y) = (3 + 2xy)i+ (x2 − 3y2)j Find a function f such that F⃗ = ∇f .

(b) Evaluate the line integral

∫
C

F⃗ ·dr⃗, where r⃗(t) = et sin ti+et cos tj is defined on 0 ≤ t ≤ π.

Solution:

From Example 9.8, we know F⃗ is conservative, so there exists a potential function f such
that ∇f = F⃗ . That is,

fx(x, y) = 3 + 2xy,

fy(x, y) = x2 − 3y2.

Integrate fx with respect to x:

f(x, y) = 3x+ x2y + g(y),

where g(y) is an unknown function of y. Differentiate this with respect to y:

fy(x, y) = x2 + g′(y).

Comparing with fy above,

x2 + g′(y) = x2 − 3y2 ⇒ g′(y) = −3y2.

Integrate with respect to y:

g(y) = −y3 +K,

where K is a constant.

Thus the potential function is

f(x, y) = 3x+ x2y − y3 +K.
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EXAMPLE 9.9

(b) By the fundamental theorem for line integrals,

∫
C

F⃗ · dr⃗ =

∫
C

∇f · dr⃗ = f(r⃗(π))− f(r⃗(0)).

Calculate the endpoints:

r⃗(0) = (0, 1)

r⃗(π) = (0,−eπ)

Evaluate f at the endpoints, choosing K = 0:

f(0,−eπ) = 0 + 0− (−eπ)3 = e3π

f(0, 1) = 0 + 0− 1 = −1.

Therefore,

∫
C

F⃗ · dr⃗ = e3π − (−1) = e3π + 1.

This method is much faster than directly evaluating the line integral.

Let F⃗ be a continuous force field moving an object along a path C parameterized by r⃗(t), a ≤ t ≤ b,
where r⃗(a) = A and r⃗(b) = B.

According to Newton’s second law, the force at a point on the curve relates to acceleration a⃗(t) =
r⃗ ′′(t) by

F⃗ (r⃗(t)) = mr⃗ ′′(t),

where m is the mass.

The work done by the force is
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W =

∫
C

F⃗ · dr⃗ =

∫ b

a

F⃗ (r⃗(t)) · r⃗ ′(t) dt =

∫ b

a

mr⃗ ′′(t) · r⃗ ′(t) dt.

Using the product rule, we can rewrite this as

W = m

∫ b

a

d

dt
[r⃗ ′(t) · r⃗ ′(t)]

1

2
dt =

m

2

∫ b

a

d

dt
∥r⃗ ′(t)∥2dt,

which evaluates to

W =
m

2
(∥r⃗ ′(b)∥2 − ∥r⃗ ′(a)∥2).

Therefore,

W =
1

2
m∥v⃗(b)∥2 − 1

2
m∥v⃗(a)∥2,

where v⃗ = r⃗ ′ is velocity.

The quantity 1
2m∥v⃗(t)∥2 is called the kinetic energy of the object.

We can rewrite the work as

W = P (A) +K(A) = K(B)−K(A),

which states that work done by the force along the path equals the change in kinetic energy.

Now assume F⃗ is a conservative force field. That is, F⃗ = ∇f .

In physics, the potential energy at a point (x, y, z) is

P (x, y, z) = −f(x, y, z),

so that

F⃗ = −∇P.

Thus,
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W =

∫
C

F⃗ · dr⃗ = −
∫
C

∇P · dr⃗ = −[P (r⃗(b))− P (r⃗(a))] = P (A)− P (B).

Comparing with the kinetic energy expression, we get the law of conservation of energy:

P (A) +K(A) = P (B) +K(B).

This means that the sum of potential and kinetic energy remains constant when moving from point
A to point B under a conservative force field. This is why we call some vector fields conservative.

If a force is not conservative, then we cannot define a scalar potential function f(x, y, z) such that

F⃗ = ∇f . This is because work depends on the path taken, not just the endpoints:

∫
C

F⃗ · dr⃗ ̸= f(B)− f(A)

In a non-conservative field, energy can be gained or lost as you move through the field.

And for a closed curve C, the line integral is generally nonzero:

∮
C

F⃗ · dr⃗ ̸= 0
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EXAMPLE 9.10

We are given the vector field F⃗ (x, y) = ⟨2xy, x2⟩ and three curves that start at (1, 2) and
end at (3, 2):

Image credit: Stewart

(a) Explain why
∫
C
F⃗ · dr⃗ has the same value for all three curves.

(b) What is this common value?

Solution:

(a) F⃗ is a conservative vector field because it has continuous first-order partial derivatives

∂

∂y
(2xy) = 2x =

∂

∂x
(x2)

on R2 which is open and simply-connected. Thus, F⃗ is independent of path. For conservative
fields, the line integral depends only on the endpoints, not the path taken. This means that
there exists a scalar potential function f(x, y) such that F⃗ = ∇f .
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EXAMPLE 9.10 (CONTINUED)

(b) To evaluate the line integral, we first find the potential function f(x, y).

Integrate the first component of F⃗ with respect to x:

f(x, y) =

∫
2xy dx = x2y + g(y),

where g(y) is a function of y.

Differentiate with respect to y:

fy = x2 + g′(y)

We are told that fy = x2, so:

x2 + g′(y) = x2 ⇒ g′(y) = 0 ⇒ g(y) = C

where C is a constant.

So the potential function is f(x, y) = x2y+C. Since adding constants to potential functions
does not affect the gradient, we can say that f(x, y) = x2y + C ∼= x2y. We now apply the
fundamental theorem for line integrals:

∫
C

F⃗ · dr⃗ = f(3, 2)− f(1, 2) = (9)(2)− (1)(2) = 18− 2 = 16
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Summary

Let F⃗ be a continuous vector field on a domain D.

1. F⃗ is called conservative if there exists a scalar potential function f such that F⃗ = ∇f .

2. The line integral
∫
C
F⃗ ·dr⃗ is independent of path if for any two piecewise-smooth paths

C1 and C2 in D with the same initial and terminal points. That is,
∫
C1

F⃗ ·dr⃗ =
∫
C2

F⃗ ·dr⃗.

3. A path C is closed if its initial and terminal points coincide. For example, a circle is a
closed path.

4. A path C is simple if it does not intersect itself. For example, a circle is simple; a
figure-eight curve is not.

5. A region R ⊆ D is open if it contains none of its boundary points.

6. A region R ⊆ D is connected if any two points in R can be joined by a path lying
entirely in R.

7. A region R ⊆ D is simply-connected if it is connected and contains no holes.

Properties:

1. The line integral of a gradient field
∫
C
∇f · dr⃗ is path independent.

2. If F⃗ is conservative, then
∫
C
F⃗ · dr⃗ =

∫
C
∇f · dr⃗, which is path independent.

3. If F⃗ is continuous on an open connected domain D and
∫
C
F⃗ · dr⃗ is independent of path

for all paths in D, then F⃗ is conservative.

4. If
∫
C
F⃗ · dr⃗ is independent of path, then

∫
C
F⃗ · dr⃗ = 0 for every closed path C.

5. Conversely, if
∫
C
F⃗ · dr⃗ = 0 for every closed path C, then

∫
C
F⃗ · dr⃗ is independent of

path.

6.
∮
C
F⃗ · dr⃗ denotes a line integral around a closed curve. That is, the curve begins and

ends at the same point. It measures the net circulation of a vector field around a loop.
It is equal to 0 for a conservative vector field.
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EXAMPLE 9.11

Evaluate the line integral
∮
C
F⃗ · dr⃗ where vecF (x, y) = ⟨x, y⟩ along the curve C = r⃗(t) =

⟨4 cos t, 4 sin t⟩ defined for 0 ≤ t ≤ 2π.

Solution:

We use the parametrization and compute:

F⃗ (x(t), y(t)) = ⟨4 cos t, 4 sin t⟩, r⃗ ′(t) = ⟨−4 sin t, 4 cos t⟩.

F⃗ · r⃗ ′(t) = (4 cos t)(−4 sin t) + (4 sin t)(4 cos t) = −16 sin t cos t+ 16 sin t cos t = 0.

∮
C

F⃗ · dr⃗ =

∫ 2π

0

0 dt = 0.

Since the line integral around the closed curve is zero, we conclude that F⃗ is conservative.

To find the potential function ϕ(x, y), note that ∇ϕ = F⃗ = ⟨x, y⟩.

Moving on,

ϕ(x, y) =

∫
x dx =

x2

2
+ c(y).

∂ϕ

∂y
= c′(y) = y ⇒ c(y) =

y2

2
.

So the potential function is

ϕ(x, y) =
x2 + y2

2
.

9.4 Green’s Theorem

Green’s theorem is a generalization of the fundamental theorem of calculus in two dimensions. It
gives the relationship between a line integral around a closed curve and a double integral over the
plane region bounded by the curve.
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If F⃗ (x, y) = ⟨P (x, y), Q(x, y)⟩ is a vector field defined on an open region that contains a
positively oriented, piecewise-smooth, simple closed curve C, and if D is the region bounded
by C, then

∮
C

F⃗ · dr⃗ =

∮
C

P dx+Qdy =

∫∫
D

(
∂Q

∂x
− ∂P

∂y

)
dA.

We say that the curve C is positively oriented if it is traversed counterclockwise, so that the region
D is always on the left as you move along C.

This theorem allows us to convert a difficult line integral into a potentially easier double integral
over a region. The right-hand side measures the total “microscopic rotation” (curl) inside the
region. Thus, the total circulation along the boundary, or the sum of curls inside is given by

∮
C

F⃗ · dr⃗.

As you can kind of see, there is a resemblance between the fundamental theorem of calculus,

∫ b

a

f ′(x) dx = f(b)− f(a),

and Green’s theorem where we integrate derivatives across a two-dimensional region to recover a
obtain a value over its boundary.

To prove Green’s theorem for simple regions, we consider two key identities. Let D be a simple
region:

D = {(x, y) | a ≤ x ≤ b, g1(x) ≤ y ≤ g2(x)}

Then

∫∫
D

∂P

∂y
dA =

∫ b

a

∫ g2(x)

g1(x)

∂P

∂y
(x, y) dy dx =

∫ b

a

[P (x, g2(x))− P (x, g1(x))] dx

which follows from the fundamental theorem of calculus.

To compute the left-hand side of

∮
C

P (x, y) dx,
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we break the boundary C into four parts C1, C2, C3 and C4, which trace the edges of region D as
shown:

Image credit: Stewart

We now compute each segment. On C1, where y = g1(x) and x ∈ [a, b], we parametrize with x and
get

∫
C1

P (x, y) dx =

∫ b

a

P (x, g1(x)) dx.

On C3, the top boundary, the curve is traversed right to left, so its reverse −C3 runs from left to
right with y = g2(x). Therefore

∫
C3

P (x, y) dx = −
∫
−C3

P (x, y) dx = −
∫ b

a

P (x, g2(x)) dx.

On C2 and C4, x is constant, so dx = 0, and thus

∫
C2

P (x, y) dx =

∫
C4

P (x, y) dx = 0.

Adding all segments, we get

∮
C

P (x, y) dx =

∫
C1

P (x, y) dx+

∫
C2

P (x, y) dx+

∫
C3

P (x, y) dx+

∫
C4

P (x, y) dx,

=

∫ b

a

P (x, g1(x)) dx−
∫ b

a

P (x, g2(x)) dx = −
∫ b

a

[P (x, g2(x))− P (x, g1(x))] dx.
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Comparing this with our earlier result,

∫∫
D

∂P

∂y
dA =

∫ b

a

[P (x, g2(x))− P (x, g1(x))] dx,

we conclude

∮
C

P (x, y) dx = −
∫∫

D

∂P

∂y
dA.

Similarly, expressing D as a type II region:

D = {(x, y) | c ≤ y ≤ d, h1(y) ≤ x ≤ h2(y)},

we could have proved

∫∫
D

∂Q

∂x
dA = −

∫
C

Qdy.

Adding these two results yields Green’s theorem:

∮
C

P dx+Qdy =

∫∫
D

(
∂Q

∂x
− ∂P

∂y

)
dA
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EXAMPLE 9.12

Evaluate the line integral

∮
C

(3y − esin x) dx+
(
7x+

√
y4 + 1

)
dy,

where C is the circle x2 + y2 = 9, oriented counterclockwise.

Solution:

The region D bounded by C is the disk x2+y2 ≤ 9. Since the boundary is closed and simple,
we can apply Green’s theorem:

∮
C

P dx+Qdy =

∫∫
D

(
∂Q

∂x
− ∂P

∂y

)
dA,

where P (x, y) = 3y − esin x and Q(x, y) = 7x+
√
y4 + 1 = 7x+ y2 + 1.

Compute the partial derivatives:

∂Q

∂x
= 7,

∂P

∂y
= 3.

Apply Green’s theorem:

∮
C

(3y − esin x) dx+
(
7x+

√
y4 + 1

)
dy =

∫∫
D

(7− 3) dA =

∫∫
D

4 dA.

Switch to polar coordinates:

∫∫
D

4 dA =

∫ 2π

0

∫ 3

0

4r dr dθ = 4

∫ 2π

0

dθ

∫ 3

0

r dr.

= 4(2π)

[
1

2
r2
]3
0

= 4(2π) · 9
2
= 36π

Green’s theorem can also be used in reverse to simplify calculations.

Suppose P (x, y) = Q(x, y) = 0 on the boundary curve C. Then by Green’s theorem,
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∫∫
D

(
∂Q

∂x
− ∂P

∂y

)
dA =

∮
C

P dx+Qdy = 0,

regardless of the values of P and Q in the interior of D.

Another important application of Green’s Theorem is computing the area A of a region D. Since

A(D) =

∫∫
D

1 dA,

we choose functions P (x, y), Q(x, y) such that

∂Q

∂x
− ∂P

∂y
= 1.

There are many valid choices:

P (x, y) = 0, Q(x, y) = x

P (x, y) = −y, Q(x, y) = 0

P (x, y) = − 1
2y, Q(x, y) = 1

2x

Applying Green’s theorem with each of these pairs gives equivalent formulas for the area:

A =

∮
C

x dy = −
∮
C

y dx =
1

2

∮
C

x dy − y dx.

So far, we’ve worked with simply-connected regions. Well, what about connected regions that are
not simply connected or regions that are not connected?

Finite Union of Simple Regions: Suppose a region D is the union of two simple regions D1

and D2 whose interiors do not overlap. Then Green’s theorem holds over the whole region:

∮
C1∪C2

P dx+Qdy =

∫∫
D

(
∂Q

∂x
− ∂P

∂y

)
dA,

where the boundary C1 ∪C2 is the positively oriented outer curve of D1 ∪D2. Internal boundaries
cancel due to opposite orientation.

Region with a Hole: Let D be a region bounded by two closed curves: the outer curve C1 and
an inner hole C2. If C1 is oriented counterclockwise and C2 is oriented clockwise, then
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∮
C1

P dx+Qdy +

∮
C2

P dx+Qdy =

∫∫
D

(
∂Q

∂x
− ∂P

∂y

)
dA.

Or equivalently,

∮
C

P dx+Qdy =

∫∫
D

(
∂Q

∂x
− ∂P

∂y

)
dA

where C = C1 ∪ C2 and both are positively oriented with respect to the region. Thus the position
direction is counterclockwise for the outer curve C1 but clockwise for the inner curve C2.

These extensions follow from applying Green’s theorem to each simple piece and using the cancel-
lation of integrals along shared internal boundaries.

Note that are two natural interpretations of Green’s theorem, depending on the type of vector flow
being measured: circulation and flux.

Circulation measures the tangential component of a vector field along a closed curve. It represents
how much the field “swirls” or “spins” around the boundary. Mathematically, it is the line integral
of the field projected onto the unit tangent vector T. Circulation around C is given by

∮
C

F⃗ ·T ds =

∫∫
D

(
∂Q

∂x
− ∂P

∂y

)
dA.

Flux measures the normal component of a vector field across a closed curve. It represents how much
the field comes through the boundary. Mathematically, it is the line integral of the field projected
onto the outward unit normal vector N. Flux across C is given by

∮
C

F⃗ ·N ds =

∫∫
D

(
∂P

∂x
+

∂Q

∂y

)
dA.

We will discuss this further later on.
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EXAMPLE 9.13

Let C be a circle of radius r centered at the origin, and let F⃗ (x, y) = ⟨x, y⟩. Compute the

total flux of F⃗ across C.

Image credit: Strang & Herman

Solution:

Let D be the disk enclosed by C. The flux across C is given by
∮
C
F⃗ · N ds where N is

the outward-pointing unit normal vector. Rather than computing this line integral directly,
we apply Green’s theorem in its flux form, which converts it into a double integral over the
interior of the region:

∮
C

F⃗ · n ds =

∫∫
D

∇ · F⃗ dA

Given F⃗ (x, y) = ⟨x, y⟩, we compute the divergence:

∇ · F⃗ =
∂x

∂x
+

∂y

∂y
= 1 + 1 = 2

This tells us that the field is uniformly expanding outward at every point. And by Green’s
theorem,

∮
C

F⃗ ·N ds =

∫∫
D

2 dA = 2

∫∫
D

dA.

Since
∫∫

D
dA is the the area of the circle, it is equivalent to πr2. Thus, we we conclude

∮
C

F⃗ ·N ds = 2πr2.
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EXAMPLE 9.14

Compute the work done by the force field F⃗ (x, y) = ⟨x(x + y), xy2⟩ that moves a particle
from the origin along the x-axis to (1, 0), then to (0, 1), and returns to the origin along the
y-axis.

Solution:

This represents a triangular path. Let C be the closed triangle traversed counterclockwise
and D the region it encloses. The work is given by the line integral

W =

∮
C

F⃗ · dr⃗ =

∮
C

x(x+ y) dx+ xy2 dy.

We will apply Green’s theorem in circulation form:

W =

∫∫
D

(
∂Q

∂x
− ∂P

∂y

)
dA.

Compute the partial derivatives for P (x, y) = x(x+ y) = x2 + xy and Q(x, y) = xy2:

∂Q

∂x
= y2,

∂P

∂y
= x

We can now get the integrand, ∂Q
∂x − ∂P

∂y = y2 − x. Now integrate over the triangular region
bounded by C, which lies below the line y = 1− x:

W =

∫ 1

0

∫ 1−x

0

(y2 − x) dy dx.

Evaluate the inner integral:

=

∫ 1

0

[
1

3
y3 − xy

]y=1−x

y=0

dx =

∫ 1

0

(
1

3
(1− x)3 − x(1− x)

)
dx.

Simplify and integrate:

=

∫ 1

0

(
1

3
(1− 3x+ 3x2 − x3)− x+ x2

)
dx

=

∫ 1

0

(
1

3
− x+ x2 − 1

3
x3

)
dx =

[
1

3
x− 1

2
x2 +

1

3
x3 − 1

12
x4

]1
0

= − 1

12
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And now for a more conceptual summary. Green’s theorem tells us that the total circulation of
a vector field around a closed curve C on the macroscopic level is the sum of all the tiny, local
circulations inside the region D it encloses.

Each point inside the region contributes its own “microscopic circulation,” which is measured by
the scalar curl:

∂Q

∂x
− ∂P

∂y
.

Green’s theorem says

∮
C

F⃗ · dr⃗ =

∫∫
D

(
∂Q

∂x
− ∂P

∂y

)
dA.

So instead of measuring rotation by walking around the entire boundary, we can simply sum up
how much the field is spinning at each point inside. Mathematically, this lets us convert a line
integral around a closed curve into a double integral over the region it encloses.

9.5 Curl and Divergence

Curl and divergence are two operators that can be performed on vector fields to reveal infor-
mation about the structure of the field. They both are generally similar in that they represent
differentiation, but there are differences both geometrically and mathematically. The easiest to
remember is that curl produces a vector field, whereas divergence, produces a scalar field. We will
begin with curl.

Let F⃗ = P i+Q j+Rk be a vector field in R3, with continuous and differentiable components.

Then the curl of F⃗ is a vector field:

(
∂R

∂y
− ∂Q

∂z

)
i+

(
∂P

∂z
− ∂R

∂x

)
j+

(
∂Q

∂x
− ∂P

∂y

)
k = curl F⃗ = ∇× F⃗ .

To remember this, you can use the symbolic determinant form:

∇× F⃗ =

∣∣∣∣∣∣∣∣∣
i j k

∂
∂x

∂
∂y

∂
∂z

P Q R

∣∣∣∣∣∣∣∣∣
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If f is a scalar function with continuous second-order partial derivatives, then

curl(∇f) = 0⃗.

Let’s prove this. Using the determinant form,

curl(∇f) = ∇× (∇f) =

∣∣∣∣∣∣∣∣∣
i j k

∂
∂x

∂
∂y

∂
∂z

∂f
∂x

∂f
∂y

∂f
∂z

∣∣∣∣∣∣∣∣∣ .

Each component becomes a difference of mixed partial derivatives:

=

(
∂2f

∂y∂z
− ∂2f

∂z∂y

)
i+

(
∂2f

∂z∂x
− ∂2f

∂x∂z

)
j+

(
∂2f

∂x∂y
− ∂2f

∂y∂x

)
k = 0⃗

by Clairaut’s theorem. Thus curl(∇f) = 0⃗.

This tells us that if a vector field is conservative (F⃗ = ∇f), then

curl F⃗ = 0⃗.

This provides a quick test. If

curl F⃗ ̸= 0⃗,

then F⃗ is not conservative.
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EXAMPLE 9.15

Let F⃗ (x, y, z) = xz i + xyz j − y2 k. Compute ∇× F⃗ . Then determine whether or not it is
conservative.

Solution:

We apply the determinant form of the curl:

∇× F⃗ =

∣∣∣∣∣∣∣∣∣
i j k

∂
∂x

∂
∂y

∂
∂z

xz xyz −y2

∣∣∣∣∣∣∣∣∣
We compute each component:

For i, we have

∂

∂y
(−y2)− ∂

∂z
(xyz) = (−2y)− (xy) = −2y − xy.

For j, we have

−
(

∂

∂x
(−y2)− ∂

∂z
(xz)

)
= − (0− x) = x.

For k, we have

∂

∂x
(xyz)− ∂

∂y
(xz) = yz − 0 = yz.

And then,

∇× F⃗ = (−2y − xy) i+ x j+ yz k = −y(2 + x) i+ x j+ yz k.

Since curl F⃗ ̸= 0⃗, F⃗ is not conservative.

https://rhoclouds.github.io


https://rhoclouds.github.io 391

EXAMPLE 9.16

(a) Show that the vector field F⃗ (x, y, z) = y2z3 i+ 2xyz3 j+ 3xy2z2 k is conservative.

(b) Find a scalar potential function f(x, y, z) such that F⃗ = ∇f .

Solution:

We compute the curl of F⃗ using the determinant form:

curl F⃗ = ∇× F⃗ =

∣∣∣∣∣∣∣∣∣
i j k

∂
∂x

∂
∂y

∂
∂z

y2z3 2xyz3 3xy2z2

∣∣∣∣∣∣∣∣∣
We compute component i:

∂

∂y
(3xy2z2)− ∂

∂z
(2xyz3) = 6xyz2 − 6xyz2 = 0

We compute component j:

−
(

∂

∂x
(3xy2z2)− ∂

∂z
(y2z3)

)
= −

(
3y2z2 − 3y2z2

)
= 0

We compute component k:

∂

∂x
(2xyz3)− ∂

∂y
(y2z3) = 2yz3 − 2yz3 = 0

Combining each components yields ∇× F⃗ = 0⃗. Therefore, F⃗ is a conservative vector field.
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EXAMPLE 9.16 (CONTINUED)

(b)
Start with the x-component:

∂f

∂x
= y2z3 ⇒ f(x, y, z) = xy2z3 + g(y, z),

where g(y, z) is an unknown function of y and z.
Differentiate with respect to y:

∂f

∂y
= 2xyz3 +

∂g

∂y

This must match the given y-component of F⃗ , which is 2xyz3. Therefore

∂g

∂y
= 0 ⇒ g(y, z) = h(z).

Now differentiate with respect to z:

∂f

∂z
= 3xy2z2 +

dh

dz

This must match the given z-component of F⃗ , which is 3xy2z2. Thus

dh

dz
= 0 ⇒ h(z) = C.

Therefore, the potential function is

f(x, y, z) = xy2z3 + C.
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The curl of a vector field measures its local rotational tendency.

Imagine placing a miniature paddlewheel in a fluid whose velocity field is described by F⃗ . The
wheel is free to spin but not to translate. If the fluid tends to swirl around the paddlewheel, it
begins to rotate. The axis the wheel spins around points in the direction of curl F⃗ , and the speed
of rotation corresponds to the magnitude of the curl vector. If the paddle doesn’t spin at all, then
curl F⃗ = 0⃗, and the field is said to be irrotational at that point. This paddlewheel is just one of
many in a field. Curl is a measure of how much a field causes each paddlewheel to spin at each
point.

A single paddlewheel at one point.
Image credit: Strang & Herman

More of the paddlewheels, each of which can
behave differently.

Image credit: UMich

In two dimensions, the curl reduces to a scalar pointing in the k-direction, representing the net
“spin” about a point on a surface. In three dimensions, the curl is a full vector field indicating the
axis and strength of rotation.
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A 2D slice of angular velocity in a wind vector field. The color map represents the scalar curl. This
plot tells you how much spin is happening at each point, but nothing about the direction.

A wind vector plot of the same curl field but in 3D and projected onto an xy-plane slice. This plot
tells you the direction in which the fluid is twisting.
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Visualization of curl in a 3D wind velocity field. Colors represent angular velocity, or spin, at each
point in the fluid. More specifically, warmer colors (yellow) indicate counterclockwise rotation and
cooler colors (blue) indicate clockwise rotation.

This vector field has 0 curl. Visually, you can see that the vectors just point outward. In MATLAB,
this returns a matrix of 0s.

zeroCurlExample.m


% Define grid
[x, y] = meshgrid(-3:0.5:3, -3:0.5:3);

% Define vector field
u = x;
v = y;

% Plot the vector field
figure
quiver(x, y, u, v, 'b')
axis equal tight
xlabel('\it{x}')
ylabel('\it{y}')
title('Vector Field \bf{F} = \langle x, y \rangle with curl = 0')

% Numerically compute curl
[curlVal, ~] = curl(x, y, u, v);
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EXAMPLE 9.17

Let r⃗(x, y) = ⟨cos(x+y), sin(x−y)⟩. Find the maximum magnitude of the curl in the region
0 ≤ x ≤ 2, 0 ≤ y ≤ 2.

Solution:

We compute the curl in two dimensions:

∇× r⃗ =

〈
0, 0,

∂

∂x
(sin(x− y))− ∂

∂y
(cos(x+ y))

〉
= ⟨0, 0, cos(x− y) + sin(x+ y)⟩

Since the curl points entirely in the z-direction, its magnitude is the absolute value of
f(x, y) = cos(x− y) + sin(x+ y).
To find local extrema of f , we compute the gradient:

∇f(x, y) = ⟨− sin(x− y) + cos(x+ y), sin(x− y) + cos(x+ y)⟩ .

We want both components to be zero:

− sin(x− y) + cos(x+ y) = 0 sin(x− y) + cos(x+ y) = 0

Adding the equations gives

2 cos(x+ y) = 0 ⇒ x+ y =
π

2
+ jπ.

Subtracting them gives

2 sin(x− y) = 0 ⇒ x− y = kπ.

So the only solution in our domain is x = y = π
4 . At this point,

curl = cos(0) + sin
(π
2

)
= 1 + 1 = 2.

Since cos(x−y)+sin(x+y) ≤ 2, this is the maximum possible value. Therefore, the maximum
magnitude of the curl is 2 at the point

(
π
4 ,

π
4

)
.

https://rhoclouds.github.io


https://rhoclouds.github.io 397

EXAMPLE 9.17 (CONTINUED)

Image credit: UMich

The green arrow represents the curl vector at (π4 ,
π
4 ). The surrounding vector field visually

resembles a whirlpool centered at this point. Intuitively, this suggests the rotation of the
fluid is greatest at the center of the whirlpool—precisely matching the maximum curl we
computed.
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EXAMPLE 9.18

The gravitational field due to an object of mass m1 at the origin, acting on a particle of
mass m2 at point (x, y, z), is

F⃗ (x, y, z) = −Gm1m2

〈
x

(x2 + y2 + z2)3/2
,

y

(x2 + y2 + z2)3/2
,

z

(x2 + y2 + z2)3/2

〉
.

Show that the gravitational field has zero curl.

Solution:

Let

P (x, y, z) =
x

(x2 + y2 + z2)3/2
,

Q(x, y, z) =
y

(x2 + y2 + z2)3/2
, and

R(x, y, z) =
z

(x2 + y2 + z2)3/2
.

Then, curl is given by

∇× F⃗ = −Gm1m2 [(Ry −Qz) i+ (Pz −Rx) j+ (Qx − Py)k] .

Compute each partial derivative:

Ry =
−3yz

(x2 + y2 + z2)5/2
, Qz =

−3yz

(x2 + y2 + z2)5/2
⇒ Ry −Qz = 0

Pz =
−3xz

(x2 + y2 + z2)5/2
, Rx =

−3xz

(x2 + y2 + z2)5/2
⇒ Pz −Rx = 0

Qx =
−3xy

(x2 + y2 + z2)5/2
, Py =

−3xy

(x2 + y2 + z2)5/2
⇒ Qx − Py = 0

Thus, ∇×F⃗ = 0⃗. This makes sense because the force of gravity does not induce whirlpool-like
behavior. It only pulls radially inward.
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We now move on to divergence.

If F⃗ = P i +Q j + Rk is a vector field on R3 and each component’s partial derivative exists,
then the divergence of F⃗ is the function of three variables defined by

div F⃗ =
∂P

∂x
+

∂Q

∂y
+

∂R

∂z
.

where div F⃗ is a scalar field.

In terms of the gradient operator

∇ =

(
∂

∂x

)
i+

(
∂

∂y

)
j+

(
∂

∂z

)
k,

the divergence of F⃗ can be written symbolically as the dot product of ∇ and F⃗ :

div F⃗ = ∇ · F⃗

If F⃗ is a vector field on R3, then curl F⃗ is also a vector field on R3. As such, we can compute its
divergence. The next theorem shows that the result is 0:

Let F⃗ = P i+Q j+Rk be a vector field on R3. If P,Q, and R have continuous second-order partial
derivatives, then curl F⃗ = 0.

Using the definitions of divergence and curl, we have

div(curl F⃗ ) = ∇ · (∇× F⃗ ) =
∂

∂x

(
∂R

∂y
− ∂Q

∂z

)
+

∂

∂y

(
∂P

∂z
− ∂R

∂x

)
+

∂

∂z

(
∂Q

∂x
− ∂P

∂y

)

=
∂2R

∂x∂y
− ∂2Q

∂x∂z
+

∂2P

∂y∂z
− ∂2R

∂y∂x
+

∂2Q

∂z∂x
− ∂2P

∂z∂y
= 0

because the terms cancel in pairs by Clairaut’s theorem. This really is a quite elegant identity.

Let’s visually interpret divergence through vector fields first.
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(a) ∇ · F⃗ > 0
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(b) ∇ · F⃗ < 0
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(c) ∇ · F⃗ = 0
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(d) ∇ · F⃗ = 0

In vector field (a), the vectors all point outward. In vector field (b), the vectors all point inward. In
vector field (c), the vectors are just moving around. In vector field (d), the vectors are all pointing
in the same direction and that direction isn’t inward or outward. There’s no change in the net flow
inward or outward.

You can think of each point on a vector field as a sink. Then, the vectors represent the speed and
direction of the fluid. Divergence is a measure of the tendency of a fluid to flow in or out of the
sink. Positive divergence means that more fluid is leaving the sink than not. Negative divergence
means that more fluid is entering the sink than not. Zero divergence means that there’s no net flow
inward or outward. Zero divergence is known as incompressible

Suppose f(x, y, z) is a scalar function. Then the gradient is
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∇f =

〈
∂f

∂x
,
∂f

∂y
,
∂f

∂z

〉
.

Taking the divergence of this gradient gives

div(∇f) = ∇ · (∇f) =
∂2f

∂x2
+

∂2f

∂y2
+

∂2f

∂z2
.

This is called the Laplace operator, and we denote it by

∇2f = ∇ · ∇f.

It appears frequently in physics, particularly in Laplace’s equation:

∇2f =
∂2f

∂x2
+

∂2f

∂y2
+

∂2f

∂z2
= 0

We can also apply the Laplace operator component-wise to a vector field. For a vector field F⃗ =
P i+Q j+Rk, we have

∇2F⃗ = ∇2P i+∇2Q j+∇2Rk.

We now reinterpret Green’s theorem using the operators of curl and divergence, allowing us to write
it more compactly and geometrically. Suppose F⃗ = P (x, y) i+Q(x, y) j is a vector field on a plane
region D ⊆ R2, with boundary curve C oriented counterclockwise.

Green’s theorem in its standard form is

∮
C

F⃗ · dr⃗ =

∮
C

P dx+Qdy =

∫∫
D

(
∂Q

∂x
− ∂P

∂y

)
dA.

We now view F⃗ as a vector field in R3 with third component 0. Then the curl of F⃗ becomes

curl F⃗ =

∣∣∣∣∣∣∣∣∣
i j k

∂
∂x

∂
∂y

∂
∂z

P (x, y) Q(x, y) 0

∣∣∣∣∣∣∣∣∣ =
(
∂Q

∂x
− ∂P

∂y

)
k.

Taking the dot product with k, we have
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(curl F⃗ ) · k =

(
∂Q

∂x
− ∂P

∂y

)
k · k =

∂Q

∂x
− ∂P

∂y
.

Thus, Green’s theorem becomes the following elegant vector identity

∮
C

F⃗ · dr⃗ =

∫∫
D

(curl F⃗ ) · k dA.

This states that the line integral of the tangential component of F⃗ around C equals the double
integral of the vertical component of the curl of F⃗ over the region D.

We can also write a second vector form by focusing on the flux of F⃗ through the boundary C.

Let the curve C be parametrized by

r⃗(t) = x(t) i+ y(t) j, a ≤ t ≤ b.

Then the unit tangent vector is

T(t) =
x ′(t)

∥r⃗ ′(t)∥
i+

y ′(t)

∥r⃗ ′(t)∥
j.

Rotating this counterclockwise by 90◦, we get the outward unit normal vector:

n(t) =
y′(t)

∥r⃗ ′(t)∥
i− x ′(t)

∥r⃗ ′(t)∥
j

Using this, we compute the flux of F⃗ across C:

∮
C

F⃗ · n ds =

∫ b

a

F⃗ (r⃗(t)) · n(t)∥r⃗ ′(t)∥ dt

After simplifying, we find

∮
C

F⃗ · n ds =

∮
C

P dy −Qdx =

∫∫
D

(
∂P

∂x
+

∂Q

∂y

)
dA.

Since ∇ · F⃗ = div F⃗ = ∂P
∂x + ∂Q

∂y , this gives the second vector form of Green’s theorem:
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∮
C

F⃗ · n ds =

∫∫
D

div F⃗ (x, y) dA

This version says that the total outward flux of F⃗ across the closed curve C, measured by the line
integral of its normal component, is equal to the total divergence of F⃗ inside the region D enclosed
by C which is given by the double integral.

Visualization of curl. Arrows represent the vector field, while color represents the value of ∇× F⃗ .
Red indicates positive (counterclockwise) rotation; blue indicates negative (clockwise) rotation.
Image credit: Von Petersdorff, UMD

Visualization of divergence. Arrows represent the vector field, and color shows ∇ · F⃗ . Red regions
behave like sources (positive divergence), while blue regions behave like sinks (negative divergence).
Image credit: Von Petersdorff, UMD
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A vector field with 0 divergence in 3D

Visualization of divergence in a 3D wind velocity field. Colors represent net flow at each point in
the fluid. More specifically, warmer colors (yellow) indicate positive divergence and cooler colors
(blue) indicate negative divergence.
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EXAMPLE 9.19

Consider the vector field F⃗ = P i+Q i+Rk shown in the figure. It lies in the xy-plane and
is identical in all horizontal planes (i.e., it is independent of z, and its z-component is 0).

Image credit: Stewart

(a) Is div F⃗ positive, negative, or zero?

(b) Is ∇× F⃗ = 0⃗? If not, in what direction does curl F⃗ point?

Solution:

(a) The field vectors point strictly in the horizontal direction and get longer as we move up

in the y-direction. This means the x-component of F⃗ , which we call P (x, y), depends on y.

In particular, ∂P
∂y > 0. However, F⃗ has no y-component, so Q = 0, and thus ∂Q

∂x = 0. Since

the field is constant in z, ∂R
∂z = 0 as well. Thus we have

div F⃗ =
∂P

∂x
+

∂Q

∂y
+

∂R

∂z
= 0 + 0 + 0 = 0.

(b) We compute the curl using the determinant form. Since F⃗ = P (x, y) i, with no j or k
component, we have

∇× F⃗ =

∣∣∣∣∣∣∣∣∣
i j k

∂
∂x

∂
∂y

∂
∂z

P (x, y) 0 0

∣∣∣∣∣∣∣∣∣ =
(
∂R

∂y
− ∂Q

∂z

)
i+

(
∂P

∂z
− ∂R

∂x

)
j+

(
∂Q

∂x
− ∂P

∂y

)
k = −∂P

∂y
k

Since ∂P
∂y > 0, −∂P

∂y k points in the negative z-direction.
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EXAMPLE 9.20

Let a rigid body B rotate counterclockwise about the z-axis with angular velocity vector
w⃗ = ω k. The angular speed of ω is the tangential speed at any point P ∈ B divided by the
distance d from the axis of rotation. Let r⃗ = ⟨x, y, z⟩ be the position vector of P .

Image credit: Stewart

(a) Show that the velocity field is v⃗ = w⃗ × r⃗.
(b) Show that v⃗ = −ωy i+ ωx j.
(c) Show that curl ∇× v⃗ = 2w⃗.

Solution:

(a) The magnitude of the velocity is given by v = ωd = ωr sin θ = ∥w⃗× r⃗∥. The direction of
v⃗ is perpendicular to both w⃗ and r⃗, which you can check with the right-hand rule. Therefore,
the velocity vector at any point is v⃗ = w⃗ × r⃗

(b) We have w⃗ = ⟨0, 0, ω⟩. Then,

v⃗ = w⃗ × r⃗ =

∣∣∣∣∣∣∣∣∣
i j k

0 0 ω

x y z

∣∣∣∣∣∣∣∣∣ = (0 · z − ωy) i+ (ωx− 0 · z) j+ (0 · y − x · 0)k = −ωy i+ ωx j.

https://rhoclouds.github.io


https://rhoclouds.github.io 410

EXAMPLE 9.20 (CONTINUED)

(c) We compute the curl as follows:

∇× v⃗ =

∣∣∣∣∣∣∣∣∣
i j k

∂
∂x

∂
∂y

∂
∂z

−ωy ωx 0

∣∣∣∣∣∣∣∣∣
=

(
∂

∂y
(0)− ∂

∂z
(ωx)

)
i−
(

∂

∂x
(0)− ∂

∂z
(−ωy)

)
j+

(
∂

∂x
(ωx)− ∂

∂y
(−ωy)

)
k

= (0− 0) i− (0− 0) j+ (ω + ω)k = 2ω k = 2w⃗

Thus, in rigid body dynamics, the curl of the velocity field encodes the local angular velocity.

To apply vector calculus meaningfully in the context of fluid flow, we have to adopt a mathematical
model called a continuum model. We imagine a physical region of space that can be filled with a
fluid like water, bounded by real surfaces, and modeled geometrically. Even if the fluid evaporated,
the shape of the region remains, allowing us to assign coordinates to each point. We assume this
fluid has mass, and that this mass is smoothly distributed. Not as isolated droplets (or, more
formally, discrete particles), but as a dense collection of particles packed so closely that the fluid
behaves like a continuous substance. Any small area in R2 or volume in R3 is assumed to contain
a large number of molecules, so that quantities like density ρ(x, y, z, t), velocity v⃗(x, y, z, t), and
pressure p(x, y, z, t) can be defined at every point in space and time.

Under this view, a particle of fluid represents an infinitesimal piece of the continuous mass, which
is the differential element used in our integrals. We can assign a vector field v⃗(x, y, z, t) = ⟨f, g, h⟩
to represent the velocity of the fluid, and track its behavior over time. A 2D vector field like
F⃗ (x, y) = ⟨f(x, y), g(x, y)⟩ can then be interpreted as a time-snapshot of motion across a fixed
surface (like the surface of water). The divergence of this field measures how fluid accumulates
or escapes from a region, a model of net outflow, while the curl represents local rotation. These
operations only make sense under the assumption of continuity, which allows us to use calculus to
describe and analyze the collective motion of infinitesimal fluid particles.

I know that calculus can be pretty dry at times. Depending on who you ask, it has arguably been
“completed” for nearly 130 years. And even then, most of the work in the 20th century was simply
the formalization of calculus by the likes of Weierstrass, Cauchy, Riemann, and Dedekind. Most of
the content within the scale of multivariable calculus is even older. But I think this section is really
quite beautiful. Up to this point in your mathematical journey, curl and divergence might be the
most elegant material you’ve come across. I hope that you found it interesting.
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10 Surface Integrals and Integral Theorems

Previously, we explored how vector fields behave over curves and regions in the plane using a variety
of foundational tools. Then, we put it all together using curl and divergence. Now we will expand
those ideas to surfaces in three dimensions by studying surface integrals and integral theorems.

10.1 Parametric Surfaces

Just as a space curve can be described by a vector-valued function r⃗(t) of a single parameter t,
a surface in R3 can be described by a vector-valued function of two parameters. A parametric
surface is defined by a vector function

r⃗(u, v) = x(u, v) i+ y(u, v) j+ z(u, v)k

where (u, v) ∈ D is a region in the uv-plane. The surface S is traced out by the tip of the position
vector r⃗(u, v) as (u, v) moves over D.

This is equivalent to defining three scalar functions:

x = x(u, v), y = y(u, v), z = z(u, v)

These are called the parametric equations of a surface.

Each choice of (u, v) gives a single point on the surface. Varying (u, v) over the entire domain D
sweeps out all of S. That is, S = {r⃗(u, v) | (u, v) ∈ D}.

A parametric surface
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EXAMPLE 10.1

Identify and sketch the surface defined by the vector function r⃗(u, v) = 2 cosu i+v j+2 sinuk.

Solution:

The parametric equations are

x = 2 cosu, y = v, z = 2 sinu.

To identify the surface, eliminate the parameters. Since x = 2 cosu and z = 2 sinu, we have
the following for any point x, y, z on the surface:

x2 + z2 = 4 cos2 u+ 4 sin2 u = 4

This equation describes a cylinder of radius 2 centered along the y-axis. Since y = v varies
freely, the surface is a circular cylinder of radius 2 extending along the y-direction.

Image credit: Stewart

If a surface S is given by a vector function r⃗(u, v), then there are two natural families of curves on
the surface, called grid curves. One family is obtained by holding u constant and letting v vary,
and the other by holding v constant and letting u vary. These correspond to vertical and horizontal
lines in the uv-domain.

Fixing u = u0, we obtain a curve C1 on the surface given by r⃗ (u0, v), which traces a curve in the
v-direction. Fixing v = v0, we get a curve C2 on the surface given by r⃗ (u, v0), which traces a
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curve in the u-direction. Together, these curves form a grid that helps visualize the geometry of
the surface. This is also how computers graph surfaces.

For instance, if the parametric surface resembles a cylinder or cone, the grid curves may look like
circles (when v is constant) and lines (when u is constant).

EXAMPLE 10.2

Find a parametric representation of the sphere x2 + y2 + z2 = a2.

Solution:

In spherical coordinates, the sphere is given by ρ = a. Let ϕ be the angle from the positive
z-axis (colatitude) and θ the angle from the positive x-axis (longitude). Then the rectangular
coordinate conversion gives:

x = a sinϕ cos θ, y = a sinϕ sin θ, z = a cosϕ

The corresponding vector equation is:

r⃗(ϕ, θ) = a sinϕ cos θ i+ a sinϕ sin θ j+ a cosϕk

The parameter domain is the rectangle D = [0, π]× [0, 2π].
Grid curves with ϕ held constant are circles of constant latitude (including the equator).
Grid curves with θ held constant are meridians (vertical semicircles) connecting the poles.

Image credit: Stewart
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More generally, any surface that can be written as a function z = f(x, y) can be treated as a
parametric surface by taking:

x = x, y = y, z = f(x, y)

In this case, we use x and y as parameters and directly obtain the surface in vector form.

Note that a surface may have many possible parameterizations. The choice of parameter domain
and coordinate expressions affects how the surface is traced out but not the surface itself.

A parameterization

r⃗(u, v) = ⟨x(u, v), y(u, v), z(u, v)⟩,

is called a regular parameterization if

r⃗u × r⃗v ̸= 0⃗

for all points (u, v) in the parameter domain.

If r⃗(u, v) is regular, then its image is a two-dimensional object. Throughout this chapter, parame-
terizations are generally assumed to be regular.

Recall that a curve parameterization r⃗(t), a ≤ t ≤ b, is smooth if r⃗ ′(t) is continuous and r⃗ ′(t) ̸= 0⃗
for all t ∈ [a, b]. Visually, we see that a curve is smooth if it has no sharp corners. Similarly, a
surface parameterization is smooth if the resulting surface has no sharp corners.

Formally, a surface parameterization

r⃗(u, v) = ⟨x(u, v), y(u, v), z(u, v)⟩

is smooth if r⃗u × r⃗v ̸= 0⃗ for any choice of u and v in the parameter domain.

A surface of revolution is formed by rotating a curve y = f(x), where f(x) ≥ 0, about the x-axis.
Letting θ be the angle of rotation, a point on the surface has the following coordinates:

x = x, y = f(x) cos θ, z = f(x) sin θ.

We use x and θ as parameters. These equations form the parametric representation of the surface.
The domain is
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a ≤ x ≤ b, 0 ≤ θ ≤ 2π.

Given a parametric surface

r⃗(u, v) = x(u, v) i+ y(u, v) j+ z(u, v)k

the tangent vectors at a point P0 = r⃗(u0, v0) are given by partial derivatives. For C1 we have

r⃗v =
∂x

∂v
(u0, v0)i+

∂y

∂v
(u0, v0)j+

∂z

∂v
(u0, v0)k.

And for C2 we have

r⃗u =
∂x

∂u
(u0, v0)i+

∂y

∂u
(u0, v0)j+

∂z

∂u
(u0, v0)k.

If r⃗u × r⃗v ̸= 0⃗, then the surface is smooth at P0, and the tangent plane at that point contains both
r⃗u and r⃗v. A normal vector to the tangent plane is given by

n⃗ = r⃗u × r⃗v.

(a) is a smooth surface because it has no sharp corners. (b) has sharp corners, so directional
derivatives do not exist at those locations. Thus, it has no smooth parameterization. That being
said, it has four smooth faces, so it is piecewise smooth. Image credit: Strang & Herman
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EXAMPLE 10.3

Find the tangent plane to the surface with parametric equations

x = u2, y = v2, z = u+ 2v

at the point (1, 1, 3).

Solution:

First compute the tangent vectors:

r⃗u =
∂x

∂u
i+

∂y

∂u
j+

∂z

∂u
k = 2u i+ 0 j+ 1k = 2u i+ k

r⃗v =
∂x

∂v
i+

∂y

∂v
j+

∂z

∂v
k = 0 i+ 2v j+ 2k = 2v j+ 2k

Now take the cross product to get the normal vector:

r⃗u × r⃗v =

∣∣∣∣∣∣∣∣∣
i j k

2u 0 1

0 2v 2

∣∣∣∣∣∣∣∣∣ = (−2v) i− (4u) j+ (4uv)k

At the point (1, 1, 3), we have u = 1 and v = 1, so the normal vector becomes

n⃗ = −2 i− 4 j+ 4k.

The equation of the tangent plane at (1, 1, 3) is given by:

−2(x− 1)− 4(y − 1) + 4(z − 3) = x+ 2y − 2z + 3 = 0
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EXAMPLE 10.3 (CONTINUED)

ex10point3.m


[u, v] = meshgrid(linspace(-2, 2, 60), linspace(-2, 2, 60));
x = u.^2;
y = v.^2;
z = u + 2*v;

% Point of tangency
u0 = 1; v0 = 1;
x0 = u0^2; y0 = v0^2; z0 = u0 + 2*v0;

% Tangent plane normal
ru = [2*u0, 0, 1];
rv = [0, 2*v0, 2];
n = cross(ru, rv);

[xx, yy] = meshgrid(linspace(x0-1, x0+1, 20), linspace(y0-1, y0+1, 20));
zz = z0 - (n(1)*(xx - x0) + n(2)*(yy - y0)) / n(3);


surf(x, y, z, z, 'EdgeColor', 'none', 'FaceAlpha', 0.95)
colormap parula
hold on

% Plot tangent plane
surf(xx, yy, zz, 'FaceColor', 'm', 'FaceAlpha', 0.9, 'EdgeColor', 'none')

% Plot point of tangency
plot3(x0, y0, z0, 'ko', 'MarkerFaceColor', 'k')
text(x0, y0, z0+1.5, '$ (1, 1, 3) $', 'Interpreter', 'latex', 'FontSize', 12)



xlabel('\itx')
ylabel('\ity')
zlabel('\itz')
axis equal
grid on
view(30, 25)


https://rhoclouds.github.io


https://rhoclouds.github.io 418

We now define the surface area of a general parametric surface given by

r⃗(u, v) = x(u, v) i+ y(u, v) j+ z(u, v)k

where (u, v) ∈ D and D is a region in the uv-plane.

To approximate the area of this surface, we divide the domain D into a grid of small rectangles.
Each rectangle Ri,j is mapped by r⃗(u, v) to a small curved patch Si,j on the surface. Each point
Pi,j corresponds to the lower left corner of a subrectangle. Then we say

r⃗ ∗
u = r⃗u(u

∗
i , v

∗
j )

and

r⃗ ∗
v = r⃗v(u

∗
i , v

∗
j )

are the tangent vectors at Pi,j .

These vectors span a parallelogram in space that approximates the patch Si,j . The area of this
parallelogram is given by the magnitude of their cross product:

∥(∆ui r⃗
∗
u)× (∆vi r⃗

∗
v)∥ = ∥r⃗ ∗

u × r⃗ ∗
v∥∆ui ∆vi

Summing over all patches gives an approximation to the total surface area:

m∑
i=1

n∑
j=1

∥r⃗ ∗
u × r⃗ ∗

v∥∆u∆v

Taking the limit as the grid becomes finer, this Riemann sum becomes a double integral:

A(S) =

∫∫
D

∥r⃗u × r⃗v∥ dA

where r⃗u = ∂x
∂u i+ ∂y

∂u j+ ∂z
∂u k and r⃗v = ∂x

∂v i+ ∂y
∂v j+ ∂z

∂v k.
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EXAMPLE 10.4

Find the surface area of a sphere of radius a with D = {(ϕ, θ) | 0 ≤ ϕ ≤ π, 0 ≤ θ ≤ 2π}.

Solution:

We use the parametric representation from EXAMPLE 10.2:

x = a sinϕ cos θ, y = a sinϕ sin θ, z = a cosϕ

We compute the cross product of the tangent vectors:

r⃗ϕ × r⃗θ =

∣∣∣∣∣∣∣∣∣
i j k

∂x
∂ϕ

∂y
∂ϕ

∂z
∂ϕ

∂x
∂θ

∂y
∂θ

∂z
∂θ

∣∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣∣

i j k

a cosϕ cos θ a cosϕ sin θ −a sinϕ

−a sinϕ sin θ a sinϕ cos θ 0

∣∣∣∣∣∣∣∣∣
= a2 sin2 ϕ cos θ i+ a2 sin2 ϕ sin θ j+ a2 sinϕ cosϕk

The magnitude of this vector is:

∥r⃗ϕ × r⃗θ∥ =

√
a4 sin4 ϕ cos2 θ + a4 sin4 ϕ sin2 θ + a4 sin2 ϕ cos2 ϕ = a2

√
sin4 ϕ+ sin2 ϕ cos2 ϕ

= a2
√
sin2 ϕ(sin2 ϕ+ cos2 ϕ) = a2 sinϕ

Our domain guarantees a nonnegative value of sinϕ. Thus, we are safe to proceed. By the
surface area formula,

A =

∫∫
D

∥r⃗ϕ × r⃗θ∥dA =

∫ 2π

0

∫ π

0

a2 sinϕdϕ dθ

= a2
(∫ 2π

0

dθ

)(∫ π

0

sinϕdϕ

)
= a2(2π)(2)

= 4πa2.
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In the special case where a surface S is given as the graph of a function z = f(x, y), we can interpret
this surface by letting x and y serve as parameters. The corresponding parametric vector function
is

r⃗(x, y) = x i+ y j+ f(x, y)k.

The tangent vectors are obtained by taking partial derivatives with respect to x and y:

r⃗x =
∂r⃗

∂x
= i+

∂f

∂x
k, r⃗y =

∂r⃗

∂y
= j+

∂f

∂y
k

To find the surface area, we compute the magnitude of the cross product r⃗x × r⃗y. Using the
determinant form:

r⃗x × r⃗y =

∣∣∣∣∣∣∣∣∣
i j k

1 0 ∂f
∂x

0 1 ∂f
∂y

∣∣∣∣∣∣∣∣∣ = −∂f

∂x
i− ∂f

∂y
j+ k

Taking the magnitude of the cross product, we get

∥r⃗x × r⃗y∥ =

√(
∂f

∂x

)2

+

(
∂f

∂y

)2

+ 1 =

√
1 +

(
∂z

∂x

)2

+

(
∂z

∂y

)2

.

Hence, the surface area of the graph z = f(x, y) over a region D is given by

A(S) =

∫∫
D

√
1 +

(
∂z

∂x

)2

+

(
∂z

∂y

)2

dA.

To confirm that this surface area formula is consistent with the surface area formula you used
in single-variable calculus, we consider the surface S formed by rotating the curve y = f(x),
where a ≤ x ≤ b, about the x-axis. Assume f(x) ≥ 0 and f ′(x) is continuous. The parametric
representation of the surface is

x = x, y = f(x) cos θ, z = f(x) sin θ.

with domain

https://rhoclouds.github.io


https://rhoclouds.github.io 421

a ≤ x ≤ b, 0 ≤ θ ≤ 2π

We compute the tangent vectors:

r⃗x =
∂r⃗

∂x
= i+ f ′(x) cos θ j+ f ′(x) sin θ k

r⃗θ =
∂r⃗

∂θ
= −f(x) sin θ j+ f(x) cos θ k

The cross product is:

r⃗x × r⃗θ =

∣∣∣∣∣∣∣∣∣
i j k

1 f ′(x) cos θ f ′(x) sin θ

0 −f(x) sin θ f(x) cos θ

∣∣∣∣∣∣∣∣∣ = f(x)f ′(x) i− f(x) cos θ j− f(x) sin θ k.

Now compute the magnitude:

∥r⃗x × r⃗θ∥ =
√
[f(x)f ′(x)]2 + [f(x) cos θ]2 + [f(x) sin θ]2

=

√
f(x)2[f ′(x)2 + cos2 θ + sin2 θ] =

√
f(x)2[1 + f ′(x)2] = f(x)

√
1 + f ′(x)2

Since f(x) ≥ 0, the surface area is

A =

∫∫
D

∥r⃗x × r⃗θ∥ dA =

∫ 2π

0

∫ b

a

f(x)
√

1 + f ′(x)2 dx dθ = 2π

∫ b

a

f(x)
√
1 + f ′(x)2 dx

This matches the formula for the surface area of a solid of revolution about the x-axis.

10.2 Surface Integrals

Surface integrals allow us to generalize the idea of integration to curved surfaces in space. Just
as a line integral accumulates values along a curve, a surface integral accumulates values across a
surface. Line integrals are to arc length as surface integrals are to surface area.

We now define the surface integral of a scalar function f(x, y, z) over a parametric surface.
Suppose a surface S is given by the vector equation:
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r⃗(u, v) = x(u, v) i+ y(u, v) j+ z(u, v)k

for (u, v) ∈ D.

We divide the domain D into rectangles Ri,j , and let each subrectangle map to a surface patch Si,j

on S. The surface integral of f over S is approximated by the Riemann sum:

m∑
i=1

n∑
j=1

f(P ∗
i,j)∆Si,j

As the number of subdivisions increases, this sum approaches the surface integral:

∫∫
S

f(x, y, z) dS = lim
∆u,∆v→0

m∑
i=1

n∑
j=1

f(P ∗
i,j)∆Si,j

The orange square represents Ri,j ⊆ D.
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To approximate the area ∆Si,j of each patch, we use the tangent vectors at Pi,j :

r⃗u =
∂r⃗

∂u
, r⃗v =

∂r⃗

∂v

Then the area of each patch is approximated as the area of the parallelogram spanned by r⃗u and
r⃗v:

∆Si,j ≈ ∥r⃗u × r⃗v∥∆u∆v

where r⃗u = ∂x
∂u i+ ∂y

∂u j+ ∂z
∂u k and r⃗v = ∂x

∂v i+ ∂y
∂v j+ ∂z

∂v k are the tangent vectors at a corner of Si,j .

The point represents Pi,j ∈ Si,j ⊆ S.

So, the surface integral becomes

∫∫
S

f(x, y, z) dS =

∫∫
D

f(x(u, v), y(u, v), z(u, v)) ∥r⃗u × r⃗v∥ dA.

This formula lets us convert a surface integral into a double integral over the parameter domain D.
For example, if f(x, y, z) = 1, the surface integral simply returns the surface area:

∫∫
S

1 dS =

∫∫
D

∥r⃗u × r⃗v∥ dA = A(S)

If the surface S is a thin sheet with variable density ρ(x, y, z), the total mass is
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m =

∫∫
S

ρ(x, y, z) dS.

The center of mass (x̄, ȳ, z̄) is given by the following:

x̄ =
1

m

∫∫
S

x ρ(x, y, z) dS

ȳ =
1

m

∫∫
S

y ρ(x, y, z) dS

z̄ =
1

m

∫∫
S

z ρ(x, y, z) dS

Any surface of the form z = g(x, y) where z is a graph can be treated as a parametric surface by
setting

x = x, y = y, z = g(x, y).

Then, the partial derivative vectors are r⃗x = i+
(

∂g
∂x

)
k and r⃗y = j+

(
∂g
∂y

)
k.

The surface area element is determined from the cross product:

r⃗x × r⃗y = −∂g

∂x
i− ∂g

∂y
j+ k

and the magnitude of that vector is

∥r⃗x × r⃗y∥ =

√(
∂z

∂x

)2

+

(
∂z

∂y

)2

+ 1.

So, the surface integral becomes

∫∫
S

f(x, y, z) dS =

∫∫
D

f(x, y, g(x, y))

√(
∂z

∂x

)2

+

(
∂z

∂y

)2

+ 1 dA.

A similar formula holds when projecting onto a different coordinate plane, such as if y = h(x, z)
and you’re projecting onto the xz-plane:
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∫∫
S

f(x, y, z) dS =

∫∫
D

f(x, h(x, z), z)

√(
∂z

∂x

)2

+

(
∂y

∂x

)2

+ 1 dA.

If S is not covered by a single parameterization and rather a finite union of smooth surfaces
S1, S2, ..., Sn, the surface integral extends as a sum over the individual parts:

∫∫
S

f(x, y, z) dS =

∫∫
S1

f(x, y, z) dS + · · ·+
∫∫

Sn

f(x, y, z) dS

We can thus break up a complex surface into multiple smooth regions that are easier to work with.
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EXAMPLE 10.5

Evaluate the surface integral
∫∫

S
z dS, where S is the closed surface composed of the cylin-

drical side S1 of x2 + y2 = 1, the disk S2 in the plane z = 0, and the top surface S3 lying
above the disk and defined by the plane z = 1 + x.

Solution:

We compute the surface integral
∫∫

S
z dS by breaking the surface into three parts:

∫∫
S

z dS =

∫∫
S1

z dS +

∫∫
S2

z dS +

∫∫
S3

z dS

We begin with side surface S1 by parameterizing S1 using cylindrical coordinates:

x = cos θ, y = sin θ, z = z

where 0 ≤ θ ≤ 2π and 0 ≤ z ≤ 1 + cos θ.
We compute the normal vector via the cross product:

r⃗θ × r⃗z =

∣∣∣∣∣∣∣∣∣
i j k

− sin θ cos θ 0

0 0 1

∣∣∣∣∣∣∣∣∣ = cos θ i+ sin θ j

∥r⃗θ × r⃗z∥ =
√
cos2 θ + sin2 θ = 1

Now we evaluate the surface integral over S1:

∫∫
S1

z dS =

∫∫
D

z ∥r⃗θ × r⃗z∥ dA

=

∫ 2π

0

∫ 1+cos θ

0

z dz dθ =

∫ 2π

0

1

2
(1 + cos θ)2 dθ

=
1

2

∫ 2π

0

(
1 + 2 cos θ + cos2 θ

)
dθ =

1

2

∫ 2π

0

(
1 + 2 cos θ +

1 + cos 2θ

2

)
dθ

=
1

2

∫ 2π

0

(
3

2
+ 2 cos θ +

1

2
cos 2θ

)
dθ =

1

2

[
3

2
θ + 2 sin θ +

1

4
sin 2θ

]2π
0

=
3π

2
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EXAMPLE 10.5 (CONTINUED)

And now for the bottom surface S2, which lies in the plane z = 0:

∫∫
S2

z dS =

∫∫
S2

0 · dS = 0

The top surface S3 is described by z = 1 + x, over the unit disk D in the xy-plane. We use
the formula for graphs:

∫∫
S3

z dS =

∫∫
D

(1 + x)

√
1 +

(
∂z

∂x

)2

+

(
∂z

∂y

)2

dA

Since ∂z
∂x = 1, ∂z

∂y = 0, we get

∫∫
S3

(1 + x)
√
2 dA =

√
2

∫∫
D

(1 + x) dA

Switch to polar coordinates:

x = r cos θ, dA = r dr dθ

Then,

∫∫
S3

z dS =
√
2

∫ 2π

0

∫ 1

0

(1 + r cos θ)r dr dθ =
√
2

∫ 2π

0

∫ 1

0

(
r + r2 cos θ

)
dr dθ

=
√
2

∫ 2π

0

(
1

2
+

1

3
cos θ

)
dθ

=
√
2

[
θ

2
+

sin θ

3

]2π
0

=
√
2π

=
√
2

∫ 2π

0

[
1

2
+

1

3
cos θ

]
dθ =

√
2 (π + 0) =

√
2π

Finally, we add each surface together:

∫∫
S

z dS =

∫∫
S1

z dS +

∫∫
S2

z dS +

∫∫
S3

z dS =
3π

2
+ 0 +

√
2π =

(
3

2
+

√
2

)
π.

https://rhoclouds.github.io


https://rhoclouds.github.io 428

Before we define the flux of a vector field across a surface, we must ensure that the surface is
orientable. That is, we must be able to assign a continuous unit normal vector n at every point.
Every orientable surface has two possible orientations: one given by n, and the other by −n.

For a surface given as the graph z = g(x, y), a natural upward-pointing unit normal vector (positive
k-component is

n =
− ∂g

∂x i− ∂g
∂y j+ k√

1 +
(

∂g
∂x

)2
+
(

∂g
∂y

)2 .
For a general parametric surface r⃗(u, v), the orientation is given by the unit vector

n =
r⃗u × r⃗v

∥r⃗u × r⃗v∥

The opposite orientation is given by −n. For closed surfaces, the standard is for it to be assigned
the outward orientation.

(a) Positive orientation: outward-pointing nor-
mal vectors.

(b) Negative orientation: inward-
pointing normal vectors.

Now, consider a vector field F⃗ , such as a velocity field. The flux of F⃗ across a surface S measures
how much of F⃗ passes through S. This is defined by the surface integral

∫∫
S

F⃗ · n⃗ dS,

and interpreted as the rate of flow across the surface.

https://rhoclouds.github.io


https://rhoclouds.github.io 429

The flux of a continuous vector field F⃗ defined on an oriented surface S with unit normal
vector n is given by the following surface integral:

∫∫
S

F⃗ · dS⃗ =

∫∫
S

F⃗ · n⃗ dS

This is called the flux of F⃗ across or over S.

For a surface S given in parametric form r⃗(u, v), the unit normal vector is given by

n⃗ =
r⃗u × r⃗v

∥r⃗u × r⃗v∥
.

So the flux of a vector field F⃗ across the surface becomes

∫∫
S

F⃗ · dS⃗ =

∫∫
S

F⃗ · r⃗u × r⃗v
∥r⃗u × r⃗v∥

dS.

We convert the surface integral into a double integral over the parameter domain D using dS =
∥r⃗u × r⃗v∥ dA. This gives

∫∫
S

F⃗ · dS⃗ =

∫∫
D

[
F⃗ (r⃗(u, v)) · r⃗u × r⃗v

∥r⃗u × r⃗v∥

]
∥r⃗u × r⃗v∥ dA.

The magnitude cancels, so the formula simplifies to

∫∫
S

F⃗ · dS⃗ =

∫∫
D

F⃗ (r⃗(u, v)) · (r⃗u × r⃗v) dA.

This equation expresses the flux through a surface S in terms of its parameterization. At every
point, we compute the component of F⃗ in the direction normal to the surface (given by the cross
product of tangent vectors r⃗u × r⃗v), and then multiply by the area element of the surface. This
captures how much of the vector field flows through each infinitesimal patch of the surface.

If the surface is given as a graph z = g(x, y), we can also express the flux by using partial derivatives.
Let

F⃗ (x, y, z) = P i+Q j+Rk
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and recall that

r⃗x × r⃗y = −∂g

∂x
i− ∂g

∂y
j+ k.

Then

F⃗ · (r⃗x × r⃗y) = −P
∂g

∂x
−Q

∂g

∂y
+R

∫∫
S

F⃗ · dS⃗ =

∫∫
D

(
−P

∂g

∂x
−Q

∂g

∂y
+R

)
dA

This assumes an upward-pointing orientation; for downward-pointing orientation, multiply the en-
tire expression by −1.

(a) Positive orientation: normal vectors point
outward from the surface.

(b) Negative orientation: normal vectors
point downward from the surface.
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EXAMPLE 10.6

Compute the flux of the vector field F⃗ (x, y, z) = z i + y j + xk across the unit sphere
x2 + y2 + z2 = 1.

Image credit: Stewart

Solution:

We use the spherical parametrization:

r⃗(ϕ, θ) = sinϕ cos θ i+ sinϕ sin θ j+ cosϕk

where 0 ≤ ϕ ≤ π and 0 ≤ θ ≤ 2π.

The vector field evaluated on the surface becomes F⃗ (r⃗(ϕ, θ)) = cosϕ i+sinϕ j+sinϕ cos θ k.
From EXAMPLE 10.4, we know that

r⃗ϕ × r⃗θ = sin2 ϕ cos θ i+ sin2 ϕ sin θ j+ sinϕ cosϕk.

Now compute the dot product:

F⃗ (r⃗(ϕ, θ)) · (r⃗ϕ × r⃗θ) = cosϕ sin2 ϕ cos θ + sin3 ϕ sin2 θ + sin2 ϕ cosϕ cos θ
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EXAMPLE 10.6 (CONTINUED)

And now we integrate:

∫∫
S

F⃗ · dS⃗ =

∫∫
D

F⃗ · (r⃗ϕ × r⃗θ) dA

=

∫ 2π

0

∫ π

0

(
2 sin2 ϕ cosϕ cos θ + sin3 ϕ sin2 θ

)
dϕ dθ

= 2

∫ π

0

sin2 ϕ cosϕdϕ

∫ 2π

0

cos θ dθ +

∫ π

0

sin3 ϕdϕ

∫ 2π

0

sin2 θ dθ

= 0 +

∫ π

0

sin3 ϕdϕ

∫ 2π

0

sin2 θ dθ

=
4π

3

The surface integral of a vector field F⃗ over a surface S measures how much of the field “flows
through” a surface. Let’s go over some applications.

If E⃗ is an electric field, then the total electric field passing through a surface S is called the electric
flux, defined as

∫∫
S

E⃗ · dS⃗.

Gauss’ law tells us that for a closed surface, this flux equals the total enclosed charge divided by
the vacuum permittivity:

Q = ε0

∫∫
S

E⃗ · dS⃗

where ε0 = 8.8542× 10−12 C2/N ·m2 is a constant called the permittivity of free space.

If u(x, y, z) is the temperature at a point in a solid, then the heat flux vector is:

F⃗ = −K∇u

where K is the thermal conductivity. The rate of heat flow across a surface S is
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∫∫
S

F⃗ · dS⃗ = −K

∫∫
S

∇u · dS⃗.

The negative sign reverses the direction of ∇u, making F⃗ point from hot regions to cold regions. In
other words, it’s a gradient where heat flows from the hot region to the cold region. This is known
as a heat sink.

Concept Formula

Surface parameterization S : r⃗(u, v) = ⟨x(u, v), y(u, v), z(u, v)⟩, (u, v) ∈ D

Surface area A =
∫∫

S
dS =

∫∫
D
∥r⃗u × r⃗v∥ du dv

Surface area differential dS = ∥r⃗u × r⃗v∥ du dv

Scalar surface integral (general
3D)

∫∫
S
f(x, y, z) dS =

∫∫
D
f(r⃗(u, v))∥r⃗u × r⃗v∥ du dv

Scalar surface integral (for z =
g(x, y))

∫∫
S
f(x, y, z) dx dy =

∫∫
D
f(x, y, g(x, y))

√(
∂g
∂x

)2
+
(

∂g
∂y

)2
+ 1 dx dy

Oriented surface element vector dS⃗ = (r⃗u × r⃗v) du dv

Vector surface integral (general
form)

∫∫
S
F⃗ · dS⃗ =

∫∫
D
F⃗ (r⃗(u, v)) · (r⃗u × r⃗v) du dv

Vector surface integral (compo-
nent form)

∫∫
S
F⃗ · dS⃗ =

∫∫
S
P dy dz +Qdz dx+Rdxdy for F⃗ = ⟨P,Q,R⟩

Relation to flux and orientation Flux =
∫∫

S
F⃗ · n⃗ dS =

∫∫
S
F⃗ · dS⃗ (depends on orientation of S)

Summary of Key Surface Integral Formulas and Concepts
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EXAMPLE 10.7

The temperature u in a metal ball is proportional to the square of the distance from the
center. Find the rate of heat flow across a spherical surface S of radius a.

Solution:

We will assume the ball is centered at the origin. Let the temperature function be u(x, y, z) =
C(x2 + y2 + z2). where C is a constant. Then the heat flux vector is

F⃗ (x, y, z) = −K∇u = −KC(2x i+ 2y j+ 2z k).

We factor to simplify:

F⃗ (x, y, z) = −2KC(x i+ y j+ z k)

On the surface of a sphere of radius a, the unit normal vector is

n =
1

a
(x i+ y j+ z k).

So the dot product becomes

F⃗ · n = −2KC(x i+ y j+ z k) · 1
a
(x i+ y j+ z k) = −2KC

a
(x2 + y2 + z2).

On S, we have x2 + y2 + z2 = a2, so

F⃗ · n = −2KC

a
· a2 = −2aKC.

Then the total heat flow is

∫∫
S

F⃗ · dS⃗ =

∫∫
S

F⃗ · n dS = −2aKC

∫∫
S

dS = −2aKC(4πa2)

= −8KCπa3.
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EXAMPLE 10.8

An infinitely long vertical wire along the z-axis carries a current I, generating a magnetic
field

B⃗ =
µ0I

2π

(
−y i+ x j

x2 + y2

)

Find the magnetic flux through a rectangle in the yz-plane where y = 0, bounded by x1 ≤
x ≤ x2 and z1 ≤ z ≤ z2.

Image credit: Loughborough University

Solution.

On the plane y = 0, the magnetic field simplifies to B⃗ = µ0I
2πx j. The surface lies in the

xz-plane and is oriented with an outward unit normal vector j. So dS⃗ = dx dz j.
Then the flux is given by:

Φ =

∫∫
S

B⃗ · dS⃗ =

∫∫ x2

x1

∫ z2

z1

µ0I

2πx
dx dz

Since the integrand is independent of z, we can factor. We will integrate z first and then x:

=

∫ x2

x=x1

(∫ z2

z=z1

µ0I

2πx
dz

)
dx

=

∫ x2

x=x1

(
µ0I

2πx
(z2 − z1)

)
dx

=
µ0I(z2 − z1)

2π

∫ x2

x=x1

1

x
dx

=
µ0I(z2 − z1)

2π
[lnx]

x2

x1

=
µ0I

2π
(z2 − z1) ln

(
x2

x1

)
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10.3 Stokes’ Theorem

Stokes’ theorem is a generalization of Green’s theorem. It relates the circulation of a vector field F⃗
around a closed space curve C to the total curl of F⃗ passing through a surface S bounded by C:

∮
C

F⃗ · dr⃗ =

∫∫
S

(∇× F⃗ ) · dS⃗ =

∫∫
S

curl F⃗ · dS⃗

where C is positively oriented (counterclockwise with respect to the surface normal), S is an oriented

surface with unit normal n⃗, F⃗ has continuous partial derivatives on an open region in R3, and
dS⃗ = n⃗ dS.

This says that the line integral of F⃗ along the boundary equals the total normal component of curl
across the surface.

If the surface lies in the xy-plane with upward normal k⃗, then Stokes’ theorem becomes:

∮
C

F⃗ · dr⃗ =

∫∫
S

(∇× F⃗ ) · k⃗ dA

This is exactly the vector form of Green’s theorem.

Let S be the surface given by z = g(x, y), where g has continuous second-order partial derivatives,

(x, y) ∈ D, and let F⃗ = P i+Q j+Rk with continuously differentiable components.

Then

∫∫
S

(∇× F⃗ ) · dS⃗ =

∫∫
D

[
−
(
∂R

∂y
− ∂Q

∂z

)
∂z

∂x
−
(
∂P

∂z
− ∂R

∂x

)
∂z

∂y
+

(
∂Q

∂x
− ∂P

∂y

)]
dA.

Let the boundary C be parameterized by:

x = x(t), y = y(t), z = g(x(t), y(t)), a ≤ t ≤ b

Then
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∮
C

F⃗ · dr⃗ =

∫ b

a

(
P
dx

dt
+Q

dy

dt
+R

dz

dt

)
dt

=

∫ b

a

[
P
dx

dt
+Q

dy

dt
+R

(
∂z

∂x

dx

dt
+

∂z

∂y

dy

dt

)]
dt

=

∫ b

a

[(
P +R

∂z

∂x

)
dx

dt
+

(
Q+R

∂z

∂y

)
dy

dt

]
dt

=

∫
C

(
P +R

∂z

∂x

)
dx+

(
Q+R

∂z

∂y

)
dy.

Now apply Green’s theorem:

∮
C

F⃗ · dr⃗ =

∫∫
D

[
∂

∂x

(
Q+R

∂z

∂y

)
− ∂

∂y

(
P +R

∂z

∂x

)]
dA

Use the product and chain rules:

∮
C

F⃗ · dr⃗ =

∫∫
D

[(
∂Q

∂x
+

∂Q

∂z

∂z

∂x
+

∂R

∂x

∂z

∂y
+

∂R

∂z

∂z

∂x

∂z

∂y
+R

∂2z

∂x∂y

)

−
(
∂P

∂y
+

∂P

∂z

∂z

∂y
+

∂R

∂y

∂z

∂x
+

∂R

∂z

∂z

∂y

∂z

∂x
+R

∂2z

∂y∂x

)]
dA

After simplifying, we have the surface integral formula:

∮
C

F⃗ · dr⃗ =

∫∫
S

(∇× F⃗ ) · dS⃗
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EXAMPLE 10.9

Use Stokes’ theorem to compute the integral

∫∫
S

(∇× F⃗ ) · dS⃗

where F⃗ (x, y, z) = xz i + yz j + xy k, and S is the part of the sphere x2 + y2 + z2 = 4 that
lies inside the cylinder x2 + y2 = 1 and above the xy-plane.

Solution:

To find the boundary curve C, we solve the system

{
x2 + y2 + z2 = 4

x2 + y2 = 1
⇒ z2 = 3 ⇒ z =

√
3

So C is the circle x2 + y2 = 1 at height z =
√
3. A vector equation for the curve is:

r⃗(t) = cos t i+ sin t j+
√
3k, 0 ≤ t ≤ 2π

r⃗ ′(t) = − sin t i+ cos t j

We evaluate the vector field along r⃗(t):

F⃗ (r⃗(t)) = xz i+ yz j+ xy k =
√
3 cos t i+

√
3 sin t j+ cos t sin tk

Now compute the circulation using Stokes’ theorem:

∫∫
S

(∇× F⃗ ) · dS⃗ =

∮
C

F⃗ · dr⃗ =

∫ 2π

0

F⃗ (r⃗(t)) · r⃗ ′(t) dt

=

∫ 2π

0

(√
3 cos t i+

√
3 sin t j+ cos t sin tk

)
· (− sin t i+ cos t j) dt

=

∫ 2π

0

(
−
√
3 cos t sin t+

√
3 sin t cos t

)
dt

=
√
3

∫ 2π

0

(− cos t sin t+ sin t cos t)dt

=
√
3

∫ 2π

0

0 dt = 0
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If two surfaces S1 and S2 share the same positively oriented boundary curve C, and both satisfy
the conditions of Stokes’ theorem, then

∫∫
S1

∇× F⃗ · dS⃗ =

∮
C

F⃗ · dr⃗ =

∫∫
S2

∇× F⃗ · dS⃗

This identity shows that the value of the surface integral of ∇× F⃗ is completely determined by the
circulation around the boundary C and not by the specific surface spanning it. This is useful when
one surface is easier to integrate over than another.

For instance, let v⃗ be a vector field representing fluid velocity, and suppose C is an oriented closed
curve in space. The circulation of v⃗ around C is defined by:

∮
C

v⃗ · dr⃗ =

∮
C

v⃗ · T⃗ ds

where T is the unit tangent vector to the curve and ds is the arc length element.

The dot product v⃗ ·T measures the component of v⃗ in the direction of the curve at each point. If
this value is large and positive, the fluid moves along the curve’s orientation. If negative, it flows
opposite to the curve’s direction.

Thus,
∮
C
v⃗ · dr⃗ measures the net tendency of the fluid to circulate around C, and is called the

circulation of v⃗ around C.

Image credit: Stewart
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Direction along C is counterclockwise relative to the surface normal vector N. Point your right
thumb in the direction of N and then curl your fingers in the positive direction along C. Image
credit: Larson & Edwards

Let P0 = (x0, y0, z0) be a point in a fluid, and let Sa be a small disk of radius a centered at P0. If
v⃗ is a velocity field and n is the unit normal to Sa, then by Stokes’ theorem and the continuity of
∇× v⃗, we approximate:

∮
Ca

v⃗ · dr⃗ =

∫∫
Sa

∇× v⃗ · dS⃗ =

∫∫
Sa

∇× v⃗ · n dS ≈ (∇× v⃗)(P0) · n(P0)πa
2

Taking the limit as a → 0, we define the curl as circulation density:

(∇× v⃗)(P0) · n⃗(P0) = lim
a→0

1

πa2

∮
Ca

v⃗ · dr⃗

This equation tells us that ∇× v⃗ · n⃗ measures the local rotational tendency of the fluid about the
axis defined by n⃗. The more the field “swirls” around that point, the greater the value.
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Stokes’ theorem can also be used to prove that if a vector field has zero curl everywhere on a
simply-connected domain, then it is conservative.

If ∇× F⃗ = 0⃗ throughout a region R3, then

∮
C

F⃗ · dr⃗ =

∫∫
S

∇× F⃗ · dS⃗ =

∫∫
S

0⃗ · dS⃗ = 0

for every closed curve C. Therefore, F⃗ is conservative on the domain. Thus, we can break any
non-simple curve into a number of more simple curves where the integrals around each simple curve
are 0.
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EXAMPLE 10.10

A liquid is swirling around in a cylindrical container of radius 2, so that its motion is described
by the velocity field

F⃗ (x, y, z) = −y
√

x2 + y2 i+ x
√
x2 + y2 j

as shown in the figure. Find
∫∫

S
(∇×F⃗ ) ·N dS where S is the upper surface of the cylindrical

container.

Image credit: Larson & Edwards

Solution:
The curl of F⃗ is given by

∇× F⃗ =

∣∣∣∣∣∣∣∣∣
i j k

∂/∂x ∂/∂y ∂/∂z

−y
√
x2 + y2 x

√
x2 + y2 0

∣∣∣∣∣∣∣∣∣ = 3
√
x2 + y2 k

Letting N = k, we compute the surface integral:

∫∫
S

(∇× F⃗ ) ·N dS =

∫∫
R

3
√
x2 + y2 dA

=

∫ 2π

0

∫ 2

0

3r · r dr dθ

=

∫ 2π

0

∫ 2

0

3r2 dr dθ

=

∫ 2π

0

[
r3
]2
0
dθ

=

∫ 2π

0

8 dθ

= 16π

https://rhoclouds.github.io


https://rhoclouds.github.io 443

10.4 The Divergence Theorem

Previously, we rewrote Green’s theorem in a vector form as

∮
C

F⃗ · n ds =

∫∫
D

div F⃗ (x, y) dA,

where C is the positively oriented boundary of a planar region D. This relates the flux across a
curve to the divergence inside the region.

Extending this idea to vector fields in R3, we are led to the divergence theorem:

∫∫
S

F⃗ · n dS =

∫∫∫
E

div F⃗ (x, y, z) dV,

where S is the closed boundary surface of the solid region E, and the orientation of S is outward.

Let E be a solid region with a closed, orientable boundary surface S, and let F⃗ be a vector
field whose components have continuous partial derivatives. If n is the outward unit normal
vector on S, then

∫∫
S

F⃗ · n dS =

∫∫∫
E

∇ · F⃗ dV =

∫∫∫
E

div F⃗ dV.

The divergence theorem states that, under the appropriate conditions, the total flux of F⃗ across
the closed surface S is equal to the triple integral of ∇ · F⃗ over the solid region E enclosed by S.
Let’s prove this.

Let F⃗ = P i+Q j+Rk, so that

∇ · F⃗ =
∂P

∂x
+

∂Q

∂y
+

∂R

∂z
.

Then

∫∫∫
E

∇ · F⃗ dV =

∫∫∫
E

∂P

∂x
dV +

∫∫∫
E

∂Q

∂y
dV +

∫∫∫
E

∂R

∂z
dV.

On the other hand,
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∫∫
S

F⃗ · n dS =

∫∫
S

(P i+Q j+Rk) · n dS =

∫∫
S

P (i · n) dS +

∫∫
S

Q (j · n) dS +

∫∫
S

R (k · n) dS.

To prove the theorem, we must verify that the following hold true:

∫∫
S

P (i · n) dS =

∫∫∫
E

∂P

∂x
dV,∫∫

S

Q (j · n) dS =

∫∫∫
E

∂Q

∂y
dV,∫∫

S

R (k · n) dS =

∫∫∫
E

∂R

∂z
dV.

We will test the equation for the z-component. Suppose E is a type I solid bounded below by
z = u1(x, y) and above by z = u2(x, y), with projection D onto the xy-plane. Then, by the
fundamental theorem of calculus,

∫∫∫
E

∂R

∂z
dV =

∫∫
D

∫ u2(x,y)

u1(x,y)

∂R

∂z
dz dA =

∫∫
D

[R(x, y, u2(x, y))−R(x, y, u1(x, y))] dA.

Now consider the surface integral

∫∫
S

R (k · n) dS =

∫∫
S1

R (k · n) dS +

∫∫
S2

R (k · n) dS +

∫∫
S3

R (k · n) dS.

On the vertical side surface S3, n is horizontal, so k · n = 0 ⇒
∫∫

S3
R (k · n) dS = 0.

On the top surface S2, where z = u2(x, y) and n points upward to align with k, we have

∫∫
S2

R (k · n) dS =

∫∫
D

R(x, y, u2(x, y)) dA.

On the bottom surface S1, where z = u1(x, y) and n points downward, we apply a negative sign:

∫∫
S1

R (k · n) dS = −
∫∫

D

R(x, y, u1(x, y)) dA.

Thus, combining all:
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∫∫
S

R (k · n) dS =

∫∫
D

[R(x, y, u2(x, y))−R(x, y, u1(x, y))] dA,

which matches the triple integral expression, proving that

∫∫
S

R (k · n) dS =

∫∫∫
E

∂R

∂z
dV.

EXAMPLE 10.11

Find the flux of the vector field F⃗ (x, y, z) = z i+y j+xk over the unit sphere x2+y2+z2 = 1.

Solution: First, compute the divergence of F⃗ :

div F⃗ =
∂

∂x
(z) +

∂

∂y
(y) +

∂

∂z
(x) = 0 + 1 + 0 = 1.

The unit sphere S is the boundary of the unit ball B, given by

B =
{
(x, y, z) ∈ R3 | x2 + y2 + z2 ≤ 1

}
.

By the divergence theorem,

∫∫
S

F⃗ · dS⃗ =

∫∫∫
B

div F⃗ dV =

∫∫∫
B

1 dV = V (B) =
4

3
π(1)3 =

4π

3
.
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EXAMPLE 10.12

Evaluate

∫∫
S

F⃗ · dS⃗, where

F⃗ (x, y, z) = xy i+ (y2 + exz
2

) j+ sin(xy)k,

and S is the closed surface bounding the solid region E, enclosed by the parabolic cylinder
z = 1− x2 and the planes z = 0, y = 0, and y + z = 2.

Image credit: Stewart

Solution:

The divergence of F⃗ is

div F⃗ =
∂

∂x
(xy) +

∂

∂y
(y2 + exz

2

) +
∂

∂z
(sin(xy)) = y + 2y + 0 = 3y.

By the divergence theorem:

∫∫
S

F⃗ · dS⃗ =

∫∫∫
E

3y dV.

Express E as the region E =

{
(x, y, z)

∣∣∣∣ − 1 ≤ x ≤ 1, 0 ≤ z ≤ 1− x2, 0 ≤ y ≤ 2− z

}
:

∫∫∫
E

3y dV = 3

∫ 1

−1

∫ 1−x2

0

∫ 2−z

0

y dy dz dx = 3

∫ 1

−1

∫ 1−x2

0

(2− z)2

2
dz dx

=
3

2

∫ 1

−1

∫ 1−x2

0

(4− 4z + z2) dz dx =

∫ 1

0

(x6 + 3x4 + 3x2 − 7) dx =
184

35
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Although we originally proved the divergence theorem for simple solid regions, it can be extended
to finite unions of such regions. Let E be the region bounded between closed surfaces S1 and S2,
where S1 lies inside S2. Let n1 and n2 be outward-pointing normals to S1 and S2, respectively.
Then the boundary of E is S = S1 ∪S2 with n = −n1 on S1, and n = n2 on S2. This ensures that
n always points outward from E.

Applying the divergence theorem to S, we obtain:

∫∫∫
E

∇· F⃗ dV =

∫∫
S

F⃗ ·n dS =

∫∫
S1

F⃗ · (−n1) dS+

∫∫
S2

F⃗ ·n2 dS = −
∫∫

S1

F⃗ · dS+

∫∫
S2

F⃗ · dS.

This is useful when the interior surface S1 is simpler to compute than the total surface S2.

Say we are given the electric field due to a point charge at the origin:

E⃗(x⃗) =
εQ

|x⃗|3
x⃗, where x⃗ = ⟨x, y, z⟩.

Let S2 be any closed surface enclosing the origin. We want to compute the flux of E⃗ across S2.
Since E⃗ is undefined only at the origin, we consider a small sphere S1 of radius a centered at the
origin, entirely inside S2. Let D be the region bounded between S1 and S2.

By the divergence theorem,

∫∫
S2

E⃗ · n dS =

∫∫
S1

E⃗ · n dS +

∫∫∫
D

∇ · E⃗ dV.

Since ∇ · E⃗ = 0 in D everywhere except the origin, the triple integral vanishes:

∫∫
S2

E⃗ · dS⃗ =

∫∫
S1

E⃗ · n dS.

Now compute the flux through the sphere S1. At any point x⃗ on the sphere, the outward unit
normal is

n =
x⃗

∥x⃗∥
.

Then,

E⃗ · n =
εQ

∥x⃗∥3
x⃗ · ∥x⃗∥

∥x⃗∥
=

εQ

∥x⃗∥2
.
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Since the sphere has radius a, this simplifies to:

E⃗ · n =
εQ

a2
.

The flux across S1 becomes:

∫∫
S1

E⃗ · dS⃗ =
εQ

a2
·A(S1) =

εQ

a2
· 4πa2 = 4πεQ.

This result shows that the total flux through any closed surface enclosing the origin depends only
on the total charge Q, not on the shape of the surface. This is a direct consequence of the inverse-
square nature of the electric field and symmetry. The contributions from different parts of the
surface “balance out” to give a consistent total.

This is a special case of Gauss’ law. If ε = 1
4πε0

, then this becomes the familiar

∫∫
S2

E⃗ · dS⃗ =
Q

ε0
.

We will now revisit a previous idea now that we have more mathematical intuition.

Let v⃗(x, y, z) be a velocity field and ρ a constant fluid density. Then F⃗ = ρv⃗ represents the rate of
flow per unit area. Consider a small ball Ba of radius a centered at point P0 = (x0, y0, z0). We can

assume that divF⃗ ≈ div F⃗ (P0) for all P ∈ Ba since div F⃗ is continuous. Then we approximate flux
over the boundary sphere Sa as

∫∫
Sa

F⃗ · dS⃗ =

∫∫∫
Ba

∇ · F⃗ dV ≈
∫∫∫

Ba

∇ · F⃗ (P0) dV = ∇ · F⃗ (P0)V (Ba)

As a → 0, the approximation becomes better and suggests that

∇ · F⃗ (P0) = lim
a→0

1

V (Ba)

∫∫
∂Ba

F⃗ · n dS.

This means that divergence measures the net outward flow per unit volume at a point. If ∇·F⃗ (P ) >

0, more flow is exiting than entering. Thus, P is a source. If ∇ · F⃗ (P ) < 0m more flow is entering

than exiting. Thus, P is a sink. If ∇ · F⃗ (P⃗ ) = 0, the flow is locally incompressible.
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For instance, let F⃗ (x, y) = x2 i+ y2 j . Then

∇ · F⃗ =
∂

∂x
(x2) +

∂

∂y
(y2) = 2x+ 2y.

At x+ y > 0, we have ∇ · F⃗ > 0. This is a source.

Atx+ y < 0, we have ∇ · F⃗ < 0. This is a sink.

Image credit: Stewart

As you can see in the vector field, the vectors that end near P1 are shorter than the vectors that
start near P1. Thus, the net flow is outward around P1 and thus a source. Near P2, the incoming
vectors are longer and coming in, therefore this represents net inward flow.

Divergence measures a field’s tendency to diverge from or converge towards a point in space. And
the divergence theorem expands out and tells us that the total field’s total expansion is equivalent
to the net flux outward. It is a unification of the microscopic and the macroscopic perspectives that
helps us represent the laws of our universe.
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Fundamental Theorem Statement

Fundamental Theorem
of Calculus

∫ b

a

F ′(x) dx = F (b)− F (a)

Relates the rate of change of a scalar function to its net change
over an interval

Fundamental Theorem
for Line Integrals

∫
C

∇f · dr⃗ = f(r⃗(b))− f(r⃗(a))

Evaluates a line integral using only the values of the scalar field
at the endpoints

Green’s Theorem ∫∫
D

(
∂Q

∂x
− ∂P

∂y

)
dA =

∮
C

P dx+Qdy

Relates a double integral over a region to a line integral around
its boundary

Stokes’ Theorem ∫∫
S

(∇× F⃗ ) · dS⃗ =

∮
C

F⃗ · dr⃗

Relates the surface integral of curl to the circulation around the
boundary curve

Divergence Theorem ∫∫∫
E

(∇ · F⃗ ) dV =

∫∫
S

F⃗ · dS⃗

Relates the total divergence inside a region to the net outward
flux across its boundary
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